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Abstract. Mammography serves as a vital tool for breast cancer detec-
tion, with screening and diagnostic modalities catering to distinct pa-
tient populations. However, in resource-constrained settings, screening
mammography may not be feasible, necessitating reliance on diagnos-
tic approaches. Recent advances in deep learning have shown promise in
automated malignancy prediction, yet existing methodologies often over-
look crucial clinical context inherent in diagnostic mammography. In this
study, we propose a novel approach to integrate mammograms and clin-
ical history to enhance breast cancer detection accuracy. To achieve our
objective, we leverage recent advances in foundational models, where we
use ViT for mammograms, and RoBERTa for encoding text based clini-
cal history. Since, current implementations of ViT can not handle large
4K x 4K mammography scans, we device a novel framework to first de-
tect region-of-interests, and then classify using multi-instance-learning
strategy, while allowing text embedding from clinical history to attend
to the visual regions of interest from the mammograms. Extensive ex-
perimentation demonstrates that our model, MMBCD, successfully incorpo-
rates contextual information while preserving image resolution and con-
text, leading to superior results over existing methods, and showcasing
its potential to significantly improve breast cancer screening practices.
We report an (Accuracy, F1) of (0.96,0.82), and (0.95,0.68) on our two
in-house test datasets by MMBCD, against (0.91,0.41), and (0.87,0.39) by
LLaVA, and (0.84,0.50), and (0.91,0.27) by CLIP-ViT; both state-of-the-art
multi-modal foundational models.

Keywords: Mammography, Clinical History, Screening, Diagnostic

1 Introduction

Screening vs. diagnostic mammography. We observe that most breast can-
cer detection techniques are based on screening mammography, and often over-
look the crucial inputs of mammogram findings and patient history. This omis-
sion of clinical history can undermine the reliability and performance of deep
neural network models, as they fail to incorporate essential diagnostic features
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valued by trained radiologists. For the readers of this paper who may not have
a medical background, screening mammograms are similar to annual preventive
exams based on the risk factors, and may not involve any specific complaint
from a patient. On the other hand, a diagnostic mammogram is asked by a doc-
tor based on any abnormal indications or signs of breast cancer symptoms. A
diagnostic mammogram often contains detailed patient history in text form.

Clinical history in breast cancer detection. Clinical history of a patient
holds immense value for radiologists, as it provides crucial context for interpret-
ing imaging studies. Without pertinent clinical information, the significance of
an imaging study may be diminished [2]. Collecting patient history is straight-
forward and can be completed by patients themselves, either independently or
with minimal assistance. For mammograms, history is often gathered through
a cost-effective questionnaire that elicits details about breast-related symptoms
(such as a lump, discharge, pain, etc), prior breast cancer diagnoses, surgeries,
radiation therapy, and other risk factors such as the family history of breast
cancer, concurrent illnesses like as other cancers. Integrating patient history into
neural network algorithms holds promise for enhancing detection accuracy.

Related works. Kooi et al. [11] investigated the potential impact of patient
age on model performance in their study, but did not find significant contri-
bution from patient’s age towards their model’s performance. Tang et al. [19]
explored the integration of clinical history in a weakly supervised framework to
enhance breast cancer detection in mammograms. However, their methodology
relied on costly annotations of segmentation masks. Tang et al. did not release
their dataset or share code or trained models, precluding direct comparison with
our methodology. Zheng et al. [22] utilized tabular data alongside CT images
to predict patient survival outcomes, while Liu et al. [13] leveraged the CLIP
foundation model for organ segmentation in CT scans. Hager et al. [6] explored
aligning cardiac MR images with patients’ routine clinical data. Wang et al.
[20] introduced MedCLIP, a foundation model trained on extensive image data,
demonstrating the capability of zero-shot predictions. Recent advancements in
vision literature have witnessed notable enhancements in the performance of
models such as Vision Transformers (ViT) [5] and ResNet [7]. We harness these
models, pre-trained on vast image datasets, for their learned representations.

Challenges and our approach. We observe that foundational models, pri-
marily designed for natural images, encounter challenges when applied directly
to breast cancer detection. Mammograms, with a resolution of 4K x 4K, often
depict minute cancerous lesions spanning just a few hundred pixels. However,
current deep neural network models necessitate resizing the images to a smaller
dimension, leading to diminished performance, particularly in detecting small
cancers [16]. Our method addresses the challenge by treating a mammogram,
not as a single sample, but as a set of Regions of Interest (ROIs), where cancer
may be present, and reformulate the problem as a multi-instance learning [4,9].

Contributions. (1) Changing the attention of the community from screening
to diagnostic mammography, we introduce multi-modal breast cancer detection
model, leveraging rich information in the clinical history. (2) We leverage recent
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advancements in foundational models, and propose a pluggable architecture,
which fuses visual embeddings from ViT, and textual embeddings from RoBERTa
models for accurate cancer detection. In the process we overcome several chal-
lenges around handling of large mammograms by foundational models, by using
a novel region-of-interest based architecture along with multi-instance-learning.
The proposed architecture not only allows to use full resolution mammograms
for training, and inference, but also helps our model to focus on salient regions
(extremely important to learn from small datasets). (3) Our MMBCD model suc-
cessfully incorporates contextual information while preserving image resolution
and context, leading to superior results over existing methods as already men-
tioned in the abstract of the manuscript.

2 Dataset

Our dataset comprises two distinct AIIMS datasets collected from different de-
partments within our institution. The first dataset encompasses diagnostic mam-
mography screenings, where patients presenting with breast-related concerns un-
dergo mammography examinations. In contrast, the second dataset consists of
opportunistic mammography screenings, involving patients with other cancer
types, individuals with a history of breast cancer, and those seeking general
screening services. Both datasets were acquired using similar imaging machines,
and clinicians adhered to a standardized protocol, namely the ACR BIRADS[!]
lexicon, when documenting indications and comments during patient diagnosis.
Due to variations in patient demographics between the two datasets, the nature
of comments provided by clinicians also exhibits differences. The first dataset
predominantly includes complaints from patients, whereas the second dataset
contains information concerning the patients’ medical history.

ATIIMS 1. This dataset comprises 3,816 studies, each containing digital mam-
mograms of patients along with their corresponding clinical background data
in textual format. The dataset encompasses three types of studies: Bilateral
Mammography, Left Mammography, and Right Mammography, with bilateral
mammography being the predominant type. We partitioned this dataset into
training and testing sets, consisting of 2,965 (571 malignancies) and 851 (148
malignancies) studies, respectively. The split was based on acquisition dates,
with the training set containing studies from May 2013 to March 2016, and the
testing set comprising consecutive studies from January 2018 to March 2019.
This split was chosen to evaluate our model’s performance under real-world
testing scenarios, enhancing its reliability.

ATIMS 2. This dataset consists of 583 (58 malignancies) studies obtained from
a different department within our hospital. Mimicking the specifications and
procedures of AIIMS 1 dataset, this dataset serves as an external validation
set to demonstrate the generalization capability of our model. This dataset is
acquired from the studies that happened between January 2020 to December
2020. We are planning to release this dataset in near future, for future research
and optimal comparison.
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Fig. 1. Analysis of clinical history in our dataset. (a) Words with high tf-idf
scores unique to each diagnosis. (b) Bigrams with the highest frequencies. Scores for
the mentioned keywords are normalized for heatmap visualization.

Clinical History. The clinical history included in both AIIMS datasets consists
of textual notes and patient complaints recorded by medical professionals. Each
clinical history typically ranges from 1 to 45 words, with an average length of 8
words. These notes reflect the doctor’s observations and speculations regarding
the patient’s complaints, excluding any pathology reports. The textual data
encompasses descriptions of prior breast cancer concerns and patient discomforts.
For patients undergoing regular screening, the clinical history often contains the
term “screening”. To process this data, we utilize the built-in tokenizer provided
by RoBERTa [14]. In Fig. 1, we highlight class-specific important unigrams and
bigrams occurring in our training split.

3 Methodology

In this section, we outline various components of our model, consisting of three
distinct parts: (1) We introduce detection module to generate Region of Interest
(ROI) candidates crucial for our pipeline. (2) We generate visual embeddings
from the ROIs, and textual embeddings from the clinical history. (3) We develop
a cross-attention module to fuse visual and textual embeddings.

3.1 ROI extraction

Large size of mammograms, 4K x 4K, poses a significant challenge, even for
large vision foundational models (LVFMs), to effectively capture relevant fea-
tures. Given that cancerous lesions in mammograms are often small, and the
majority of the image area is benign, and looks similar across samples, it es-
sentially converts our problem to a fine-grained visual classification task, where
focusing on salient regions becomes extremely important. To help a foundational
model in our architecture to focus on salient regions, we employ an object de-
tection modules|[10,17,21] trained to delineate bounding boxes around cancerous
regions within mammograms. However, training such models typically necessi-
tates costly bounding box annotations. To overcome this limitation, we curate
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Fig. 2. Proposed architecture. Our framework utilizes a cross-attention layer to
attend to top K ROI embeddings by the textual representation of the clinical history.
Our findings reveal the synergistic impact of textual, visual, and cross-attention em-
beddings on the accuracy of breast cancer detection.

left breast status post CT>

a small subset comprising approximately 390 malignant mammograms from our
training dataset. Additionally, we utilize 540 benign images, which do not re-
quire bounding box annotations. This approach enables us to effectively train
our module to provide ROI annotations over mammograms. To perform ROI ex-

traction, we utilize FocalNet-DINO [21] () as our detection module. Given a set
of input images I}’ ;, the module outputs m bounding box predictions for each
image I;, denoted as: {RJL,}7"; = 0(IjL,). Here, 0 represents the parameters

of the FocalNet-DINO model. Each R, prediction corresponds to a bounding
box around a potential cancerous region within the respective image I;.

3.2 Combining Text and Image: MIL with Late Fusion

Vision module with multi-instance learning. To train our ViT based vision
encoder, we treat the ROIs extracted from mammograms as a set {R].;};. For
malignant images, this set comprises both malignant and benign regions of the
mammogram, whereas for benign images, it consists solely of benign regions. In
this setup, we leverage classical multi-instance learning (MIL) strategy. We train
our image encoder (V) by inputting all the ROIs to it and extracting visual
embeddings ({e,}7~;) from each ROI. Subsequently, we aggregate these embed-
dings to create a collective representation (Ey ) that encapsulates contextual
information from across the entire mammogram. This aggregation is achieved
using Max-Pooling over all the output embeddings from the vision encoder:

{eo}jty = V(R]L,); Ey = Max-Pool(ejL,,dim = 1). (1)

The rationale behind using Max-Pooling is to ensure that we capture all rele-
vant features present in any of the ROIs. In contrast, taking the mean of the
final embeddings may dilute the embedding if the number of benign embeddings
outweighs the number of malignant embeddings, potentially diminishing the rep-
resentation of malignant features. Specifically, we utilize the Vision Transformer
(ViT) architecture from the open-source DINQ [3] repository.
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Text encoder. For the text encoder, we utilize a sequence classification mod-
ule to encode the clinical history (H}>;) of the patients. In our experiments,
we employ another text foundational model, RoBERTa [14]| to extract sentence
embeddings. We denote RoBERTa as (7"), and use output corresponding to [CLS]
token as sentence embeddings (Er). During experimentation, we observed that
certain keywords (as depicted in Fig. 1) appear exclusively in specific classes,
potentially leading to overfitting of our model to these keywords. To mitigate
this issue, we identify 100 most relevant keywords in our corpus using tf-idf
scores [18] and randomly mask these keywords during training:

{ET}?:l = T( inzl)' (2)

It is important to note that our model operates under a single-view classification
paradigm. For patients diagnosed with malignancy, during training, we do not
include clinical history from the unaffected breast.

3.3 Cross-attention between clinical history and image ROIs

To integrate both the visual ({e,}}2;) and clinical history (E7) embeddings,
we train a cross-attention module between these embeddings. In this setup, the
clinical history E7 serves as the query, while each {e, }; acts as the key and value.
Consequently, this module produces a single unified embedding (E4), where each
ROI is attended to by the patient’s clinical history. The attention mechanism can
be described as follows:

Er - ({e,} )T
Ea = Attention(Er, {e,}7.) = softmax (W) e}y (3)

Here, dj, represents the embedding size. This embedding plays a crucial role
in the model, as it addresses the challenge of detecting small cancerous lesions
present in only a few of the ROIs obtained from the detection module. By learn-
ing the relationship between a patient’s history and the ROIs, the model can
determine which ROIs best represent the patient’s clinical background. Finally,
we concatenate the obtained embeddings (Ev, Ea, and Er), and pass them
through a Multi-Layer Perceptron (MLP) to generate the malignancy score ().

4 Experiments and Results

Implementation Details. Our detection model is initialized with COCO weights,
while vision encoders leverage various publicly available pre-trained weights. We
employ Non-Maximum Suppression (NMS) with an Intersection over Union (IoU)
threshold of 0.1 on detection model’s output. This facilitates obtaining non-
overlapping bounding boxes, enhancing contextual information for subsequent
processing stages. We use Cross-Entropy loss to back-propagate the classification
loss. In training the text encoder, masking ratio is set to 20%, learning rate is
set to 1e-06 for whole network, and trained for 100 epochs. This training process
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Table 1. Compar- Model weiehte | ALIMS 1 ALIMS 2
ison  of  multi-modal €W [Ace. F1 AUC [Ace. FI_AUC
approaches for breast CLIP-R50[15] | ImageNet | 0.69 0.36 0.820 | 0.64 0.22 0.769
cancer detection. includ- CLIP-R50[15] | CLIP 076 034 0759 | 0.73 021  0.694
X . ’ CLIP-ViT[15] | ImageNet | 0.83 047 0.856 | 0.69 0.20 0.699
ing various CLIP models CLIP-ViT[I5] | DINO 084 05 0895 | 0.91 027 0.741
and LLava-1.5 using the LLaVA[12] LCS-558K | 091 041 - | 087 039 -
OURS 0.96 0.82 0.973 | 0.95 0.68 0.950

LORA method.

is executed on a server equipped with 8 NVidia A100 GPUs, each possessing
80GB of memory. To ensure complete reproducibility, we release the source code
of our model. *

4.1 Comparison with multi-modal foundational models

We evaluate the performance of our model by comparing it with various multi-
modal foundational models as summarized in Table 1.

CLIP [15]. We fine-tune for our case using contrastive learning between image-
text pairs. However, the CLIP model operates on small-sized images of 224 x 224
pixels. To address this limitation, we employ our proposed method of training of
using ROIs to obtain visual embeddings from mammograms using CLIP vision
encoder (V). The resulting image embedding, along with the textual embed-
ding, undergoes contrastive loss learning. During testing, the model receives a
mammogram and two prompts for binary classification.

Prompts: < Cancer:{Yes/No}; Indication:{Clinical History} > (4)

We experiment with various CLIP configurations by switching vision encoders,
and weight initializations as shown in Table 1.

LLava-1.5 [12]. We also fine-tune state-of-the-art foundational model LLaVa-1.5
using the LORA [8] method. Both the training and testing sets encompass com-
plete mammogram images along with a prompt. The prompt comprises of pa-
tient’s clinical history and a query regarding whether the patient has cancer or
not. The prompts are formulated in a manner that elicits a binary output of ei-
ther “Yes” or “No” from the model. The model undergoes fine-tuning specifically
for a binary output of “Yes” or “No” as the expected output which is then used
for binary classification. It is to be noted that during testing, the model does not
output confidence/logit value for its prediction and hence we could not calculate
the AUC metric for it.

4.2 Ablation Study

Table 2 illustrates the significance of each embedding within our network ar-
chitecture. Notably, the inclusion of patient clinical history (text embeddings)
significantly enhances the performance of our proposed module. Additionally,

4 https://mammo-iitd-aiims.github.io/MMBCD
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Fig. 3. The figure shows the ROI bounding boxes and the respective attention scores
obtained from our proposed cross-attention layer for different samples. The ROI with
the highest attention is drawn in red, and remaining in green.

Table 2. Performance impact of various components and embeddings in our model.
“Attn” denotes attention module, and “mask” denotes use of history word masking.

‘ AIIMS 1 AIIMS 2
Vision Text Attn Mask ‘ Accuracy Fl-score AUC ‘ Accuracy Fl-score AUC
N - - - 0.94 0.69 0.928 0.96 0.66 0.900
v’ v’ - - 0.96 0.79 0.968 0.94 0.60 0.943
v’ v’ v’ - 0.96 0.82 0.973 0.95 0.68 0.950
v’ v’ v’ v’ 0.96 0.77 0.970 0.96 0.71 0.946

the effectiveness of our proposed cross-attention layer between text and visual
embeddings is underscored by the attention visualization in Fig. 3, showcas-
ing salient regions of mammograms receiving significant attention by the text
embeddings. Note that for experiments without proposed attention module, we
simply concatenate visual and text embeddings and pass it through an MLP for
prediction. Furthermore, our approach prevents overfitting during text module
training through proposed masking of specific words in the clinical history, as
shown in results corresponding to “mask” in Table 2. In Table 3 we show an-
other ablation study using different vision encoders in our architecture. Results
of more ablation studies are in the supplementary.

5 Conclusion

Capturing clinical history of a patient straightforward, cost-effective, and holds
immense value for radiologists, as it provides crucial context for interpreting
imaging studies. Without pertinent clinical information, the significance of an
imaging study may be diminished. Yet, most automated techniques for breast
cancer detection do not include clinical history in the inference process. Our
proposed approach addresses this key deficiency. In the process, we develop a
novel architecture which leverages recent advances in multi-modal foundational
models to give an highly accurate breast cancer detection.
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Table 3. Ablation study |
by using various vision en- Model | Weights
coders in proposed model.

AIIMS 1 AIIMS 2
‘ Acc. F1 AUC ‘ Acc. F1 AUC

ResNet50 | ImageNet | 0.94 0.63 0.914 | 0.96 0.62 0.882

As observed, ViT-DINO  gegNets50 | CLIP 0.94 0.64 0853|096 0.65 0817
works best in our settings, ViT ImageNet | 0.94 0.61 0.878 | 0.95 0.57 0.855
and has been used in all  ViT CLIP 0.94 0.66 0.908 | 0.96 0.65 0.884
experiments. ViT DINO 0.94 0.69 0.928 | 0.96 0.66 0.900
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