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Abstract. Cervical cancer poses a severe threat to women’s health glob-
ally. As a non-invasive imaging modality, cervical optical coherence to-
mography (OCT) rapidly generates micrometer-resolution images from
the cervix, comparable nearly to histopathology. However, the scarcity of
high-quality labeled OCT images and the inevitable speckle noise impede
deep-learning models from extracting discriminative features of high-
risk lesion images. This study utilizes segmentation masks and bounding
boxes to construct prior activation maps (PAMs) that encode patholo-
gists’ diagnostic insights into different cervical disease categories in OCT
images. These PAMs guide the classification model in producing reason-
able class activation maps during training, enhancing interpretability and
performance to meet gynecologists’ needs. Experiments using five-fold
cross-validation demonstrate that the PAM-guided classification model
boosts the classification of high-risk lesions on three datasets. Besides,
our method enhances histopathology-based interpretability to assist gy-
necologists in analyzing cervical OCT images efficiently, advancing the
integration of deep learning in clinical practice.

Keywords: Cervical Cancer · Optical Coherence Tomography · Image
Classification · Visualization · Interpretability.

1 Introduction

Cervical cancer (CC), attributed to human papillomavirus infection, is the fourth
most common cancer among women globally [13], with higher incidence and
mortality in countries with low human development index [12]. Compared with
routine CC screening techniques, such as the thinprep cytology test and col-
poscopy, optical coherence tomography (OCT) [4] has recently been proven to
have obvious advantages in real-time, high-resolution imaging of human cervi-
cal tissue in vivo and ex vivo, comparable nearly to histopathology [2, 9, 10, 17].
These advantages promoted the clinical application of OCT in the early and
accurate detection of cervical lesions [16].

However, most gynecologists are not yet well-versed in diagnostic features
in cervical OCT images. There is a pressing need to develop computer-aided
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diagnosis systems to help gynecologists accurately and efficiently interpret cer-
vical OCT images [8]. Developing an effective deep-learning model for cervical
OCT image analysis currently faces two key challenges. (1) Scarcity of la-
beled data. Labeling cervical OCT images requires a precise, one-to-one cor-
relation with the pathology results of biopsy samples. This makes the labeling
process extremely time-consuming. As a result, amassing a substantial dataset of
high-quality, labeled cervical OCT images to facilitate model training has proven
highly difficult [1,15]. (2) Intrinsic speckle noise. Cervical OCT images inher-
ently contain coherent noise (speckle noise), similar to OCT for ophthalmology
imaging. This noise obstructs deep-learning models from identifying distinctive
features in high-risk cervical lesion images. It also causes models to overfit more
readily to the noise, resulting in poor generalizability on different datasets.

The above challenges also hamper the interpretability of deep-learning mod-
els. For example, we found that GradCAM [11] visualizations of classification
results tend to be unstable and occasionally inaccurate for the cervical OCT
image classification. This makes it difficult for gynecologists to comprehend and
trust the deep-learning model’s reasoning. To address these issues, in this study,
we leverage the knowledge and skills of pathologists in analyzing cervical OCT
images to construct prior activation maps (PAMs). PAMs, generated via segmen-
tation masks and manually annotated bounding boxes, indicate the significance
of each pixel in the input image during classification. By leveraging these custom
activation maps to constrain those generated by the class activation mapping
(CAM) series [5] during training, along with the standard classification loss, our
model can maintain strong classification performance and better interpretability.
Overall, our contributions can be summarized in three aspects:

– This is the first work to construct custom activation maps that encode
pathologists’ prior knowledge and skills in cervical OCT image analysis.
PAMs can produce more reasonable heat maps to provide better visual in-
terpretability for gynecologists when overlaid on the original image.

– We constrain the classification model’s CAM-generated activation maps with
PAMs during training. This ensures the model focuses on key features for
classification and mitigates the impact of speckle noise, thereby achieving
better classification performance and interpretability for high-risk lesions.

– Through experiments using five-fold cross-validation, the PAM-guided clas-
sification model demonstrates improved classification performance on three
datasets. Additionally, the model achieves more stable and accurate inter-
pretability based on histopathology, promoting its potential clinical use.

2 Data Collection

A multi-center clinical study [10] was conducted from August 2017 to December
2019 to evaluate the efficacy of OCT for detecting cervical diseases. The study
recruited 785 subjects from five hospitals and one examination center in China.
Two external validation sets were also used to assess our method’s generalizabil-
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ity, collected using the same protocol as the multi-center study. Ethical approval
was obtained from the ethics committees at each participating institution.

Table 1 presents the statistics of the experimental datasets. The internal
dataset has 1,683 cervical OCT volumes from 785 subjects labeled according
to the pathology results of biopsy specimens. The Huaxi dataset includes 760
labeled OCT volumes from 228 subjects at West China Hospital, Sichuan Univer-
sity. The Xiangya dataset consists of 278 labeled OCT volumes from 120 subjects
at Xiangya Second Hospital, Central South University. All the OCT images were
categorized into mild inflammation (MI), cyst (CY), ectropion (EP), high-grade
squamous intraepithelial lesion (HSIL), and CC. As with previous work for bi-
nary classification [1, 8, 10, 15, 17], MI, CY, and EP were classified as negative,
while HSIL and CC were classified as positive.

Table 1. Statistics of experimental datasets.

Dataset Size MI CY EP HSIL CC Total

Internal
#Subjects 273 173 106 176 57 785
#Volumes 780 302 184 283 134 1,683
#Images 8,810 3,950 2,360 4,285 3,140 22,545

External
(Huaxi)

#Subjects 130 46 12 38 2 228
#Volumes 545 106 28 74 7 760
#Images 5,450 1,060 280 740 70 7,600

External
(Xiangya)

#Subjects 22 39 24 26 9 120
#Volumes 75 80 63 40 20 278
#Images 750 800 630 400 200 2,780

3 Method

3.1 Generating PAMs Based on Prior Knowledge

Figure 1(a) illustrates the process of generating prior activation maps and heat
maps based on pathologists’ prior knowledge. For the three negative categories
(MI, CY, and EP), which exhibit apparent layered structures or papillary-shaped
features, we train a segmentation model based on HRNet [14] using 4,200 anno-
tated images to segment the three image types. For the two positive categories
(HSIL and CC), which have entirely lost their layered structures, we frame the
lesion region by manually annotating bounding boxes. Then, we briefly introduce
our method for producing PAMs for each image category based on segmentation
masks or bounding boxes derived from experts’ prior knowledge and skills.

Cervical inflammation image. As shown in Figure 2(a), the basement
membrane (BM) is the most crucial feature for diagnosing cervical inflammation.
Therefore, the activation value aBM of all pixels corresponding to BM is set to
the maximum value of 1.0. Given a cervical inflammation image, the calculation
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Fig. 1. The overall process of PAM-guided cervical OCT image classification.

of the activation value for each pixel corresponding to the epithelium comprises
the following steps.

Step 1: A 7×7 average filter is applied to the image to reduce speckle noise.
Step 2: Calculate the shortest distance between the current epithelial pixel

and all BM pixels as the distance between the epithelium and BM:

D
(
pEp(xi, yi)

)
= min

(
Dis

(
pEp(xi, yi),

{
pBM(xj , yj)

}NBM

j=1

))
, (1)

where pEp(xi, yi) is an epithelial pixel with coordinates (xi, yi),
{
pBM(xj , yj)

}
is the set of BM pixels, NBM is the number of BM pixels, and Dis(a,B) is the
Euclidean distance between pixel a and all the pixels in set B.

Step 3: Calculate the minimum and maximum distances from the epithelium
that has NEp pixels to BM:

dEp
min = min

({
D
(
pEp(xi, yi)

)}NEp

i=1

)
, (2)

dEp
max = max

({
D
(
pEp(xi, yi)

)}NEp

i=1

)
. (3)
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Fig. 2. Cervical OCT image examples of five categories and their corresponding heat
maps generated based on prior knowledge.

Step 4: Calculate the activation value regarding decay distance based on
dEp
min, dEp

max, aBM, and the lower bound of epithelial activation values da
Ep

l :

Adis
(
pEp(xi, yi)

)
=

da
Ep

l − aBM

dEp
max − dEp

min

D
(
pEp(xi, yi)

)
+aBM− da

Ep

l − aBM

dEp
max − dEp

min

dEp
min. (4)

Step 5: Integrate the pixel’s grayscale value into the distance-based activation
value Adis

(
pEp(xi, yi)

)
to get the final activation value A

(
pEp(xi, yi)

)
:

gEp
avg = average

({
G
(
pEp(xi, yi)

)}NEp

i=1

)
, (5)

Rg

(
pEp(xi, yi)

)
= min

(
G
(
pEp(xi, yi)

)
gEp
avg

, 1

)
, (6)

A
(
pEp(xi, yi)

)
= Adis

(
pEp(xi, yi)

)
×Rg

(
pEp(xi, yi)

)
, (7)

where G
(
pEp(xi, yi)

)
denotes the grayscale value of pixel pEp(xi, yi), gEp

avg is
the average grayscale value of epithelial pixels, and Rg

(
pEp(xi, yi)

)
denotes the

scaling ratio of the pixel’s activation value.
The calculation process of the activation value for each stromal pixel is similar

to that used for epithelial pixels, except that the lower bound of activation values
applies to stromal pixels (da

St

l ) instead. The difference in grayscale value between
epithelial and stromal pixels is also factored in when computing stromal pixels’
activation values. Pixels belonging to other regions, like background and condom,
have their activation values set to 0.

For the calculation of activation maps for cervical cyst and ectropion images,
please refer to Supplementary Material.

HSIL and CC images. As shown in Figures 2(d) and 2(e), the high-risk
lesion region is first manually enclosed within a bounding box by pathologists. A
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simple linear function is designed to calculate the activation value based solely
on the pixel’s grayscale value for all lesion pixels within the bounding box.

A
(
pLR(xi, yi)

)
=

aLR
l − aLR

u

gmax − gmin
G
(
pLR(xi, yi)

)
+ aLR

u − aLR
l − aLR

u

gmax − gmin
gmin, (8)

where aLR
l and aLR

u denote the lower and upper bounds of activation values for
lesion pixels, gmax is the maximum grayscale value that is equal to 255, and gmin

is the minimum grayscale value that is equal to 0.

3.2 Training Process

We then train a classification model after obtaining cervical OCT images’ PAMs.
Figure 1(b) depicts the training framework, including two forward processes.

First forward process. Given an image I ∈ RH×W×3, features are ex-
tracted by a convolutional neural network (CNN) to form a feature map A1 ∈
RH

32×
W
32×K . To ensure the feature map is consistent with what the classification

model generates during inference, different operations are applied based on the
CNN architecture: ResNet [3]: Set all batch normalization layers to the eval()
mode; ConvNeXt [6]: Set the drop path rate to 0 for all blocks. Following the same
approach as the CAM series, an activation map Ā ∈ RH

32×
W
32 is then obtained as

wc
k =

1

Z

∑
i

∑
j

∂lc

∂A1
k
ij

, (9)

Ā = normmax-min

(
ReLU

(∑
k

wc
kA1

k
))

, (10)

where lc is the predicted logit for class c, A1
k
ij is the value for the (i, j) position

in the k-th channel of the feature map, Z = H
32 × W

32 is the total number of
elements contained in a channel, and wc

k is the weight of class c for channel k.
Second forward process. Reset the batch normalization layers back to the

train() mode for ResNet; reactivate the drop path rate across all blocks for Con-
vNeXt. Then, we extract a new feature map A2 ∈ RH

32×
W
32×K to generate the

final class probability distribution p ∈ R1×C , calculated as follows:

p = softmax(FC(GAP(A2))), (11)

where GAP(·) denotes the operation of global average pooling, and FC(·) denotes
a fully-connected layer operation.

Loss function. When the two forward processes end, we design an activation
map alignment loss Lact_align and an image classification loss Limg_cls as

Lact_align = MSE(Up(Ā),A∗), (12)
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where MSE(·) denotes the mean squared error function, Up(·) denotes an up-
sampling operation (here we use bilinear interpolation for 32× upsampling), and
A∗ ∈ RH×W is a PAM obtained in Section 3.1.

Limg_cls = CE(p, t), (13)

where CE(·) is the cross-entropy loss, and t is the class label of image I. The
final loss is then defined as

L = λaLact_align + λiLimg_cls, (14)

where λa and λi are the weights of the activation map alignment loss Lact_align

and the image classification loss Limg_cls, respectively.

4 Experiment Setups and Results

4.1 Experiment Setups

ResNet and ConvNeXt models were implemented using ResNet-18 with 11.18M
parameters and ConvNeXt_Pico with 8.54M parameters for practical efficiency.
OCT image resolution was standardized to 512×1024. The lower bounds for
the epithelial distance decay activation da

Ep

l , stromal distance decay activa-
tion da

St

l , and the distance decay activation for pixels within papillary struc-
tures da

PS

l were set to 0.5, 0.3, and 0.1, respectively. Both the activation map
alignment loss weight λa and the image classification loss weight λi were set
to 1. We trained the models for 35 epochs using the AdamW [7] optimizer
with a batch size 48. The source code is available at https://github.com/ssea-
lab/AMGuided_Cervical_OCT_Classification. For more details on experiment
setups, please refer to Supplementary Material.

4.2 Results

Classification Results on Three Datasets. Table 2 presents image classifi-
cation results using five-fold cross-validation on three datasets. Adding a PAM
alignment loss (denoted as “+PAM”) improved the overall classification perfor-
mance regarding binary accuracy and AUC across ResNet and ConvNeXt models
on three different datasets. Remarkably, the two models achieved notable in-
creases in sensitivity across the three datasets, indicating improved detection of
positive cases. The highest sensitivity gains (> 4.70%) were seen on the Xiangya
dataset. However, specificity decreased slightly (< 0.80%) on the Huaxi dataset
for both models. This rise in false positives suggests the need to refine PAMs,
especially for HSIL and CC, to enhance sensitivity while mitigating decreases
in specificity. Overall, our method shows promise for improving sensitivity while
maintaining high specificity for CNN-based cervical OCT image classification.
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Table 2. Classification results of the PAM-guided model on three datasets (mean±std).

Dataset Model Five-class
Accuracy (%)

Binary
Accuracy (%)

Sensitivity
(%)

Specificity
(%) AUC

Internal

ResNet 88.45±2.00 96.21±0.99 94.33±2.91 96.88±0.74 0.9907±0.0135
ResNet
+PAM

89.60±2.42
(1.15)

97.48±1.20
(1.27)

94.70±5.84
(0.37)

98.24±0.98
(1.36)

0.9914±0.0162
(0.07%)

ConvNeXt 91.88±2.29 98.04±0.87 96.02±4.21 98.53±0.99 0.9928±0.0206
ConvNeXt
+PAM

92.65±2.00
(0.77)

98.19±0.63
(0.15)

97.26±2.73
(1.24)

98.29±1.10
(-0.24)

0.9942±0.0185
(0.14%)

Huaxi

ResNet 91.60±0.65 95.79±0.35 74.50±6.78 98.33±0.51 0.9807±0.0137
ResNet
+PAM

91.89±1.02
(0.29)

96.04±0.82
(0.25)

77.63±2.93
(3.13)

98.23±1.34
(-0.10)

0.9821±0.0084
(0.14%)

ConvNeXt 92.09±0.35 95.25±0.34 71.14±5.90 98.13±0.38 0.9683±0.0258
ConvNeXt
+PAM

91.73±1.54
(-0.36)

95.35±0.71
(0.10)

78.55±3.01
(7.41)

97.35±0.76
(-0.78)

0.9711±0.0152
(0.28%)

Xiangya

ResNet 87.87±0.24 92.81±0.76 67.00±3.60 99.92±0.10 0.9739±0.0186
ResNet
+PAM

87.69±2.05
(-0.18)

94.09±0.45
(1.28)

74.92±2.28
(7.92)

99.36±0.43
(-0.56)

0.9863±0.0197
(1.24%)

ConvNeXt 88.18±0.56 94.31±0.49 75.00±1.96 99.62±0.12 0.9901±0.0092
ConvNeXt
+PAM

88.96±0.27
(0.78)

95.42±0.26
(1.11)

79.71±0.75
(4.71)

99.75±0.22
(0.13)

0.9912±0.0058
(0.11%)

Visualization of Classification Results. Figure 3 demonstrates the improved
visual interpretability of classification results after using the PAM alignment
loss. Neither model identified BM’s exact location in the MI image. Instead,
ResNet+PAM highlighted BM, and ConvNeXt+PAM accurately focused on the
epithelium, stroma, and BM, resembling the ground truth heat map. Although
the models roughly located the nabothian cysts in the CY image, they neglected
BM. ConvNeXt+PAM generated a better, more ground truth-like visualiza-
tion result than ResNet+PAM. For the EP image, it was tough for the noise-
affected models to accurately detect the hyper-scattering papillary structures.
ResNet+PAM improved the contour clarity of papillae, while ConvNeXt+PAM
accurately located those papillae and was almost unaffected by speckle noise. For
the HSIL and CC images, the models seem to wrongly focus on the condom while
neglecting the lesion region where the light intensity decayed rapidly. Compared
with ResNet+PAM, ConvNeXt+PAM achieved more accurate focus. Overall,
adding the PAM alignment loss to ResNet and ConvNeXt models greatly en-
hanced their visualization accuracy and stability, with ConvNeXt+PAM’s results
closely matching ground truth.

5 Conclusion

In this study, we leverage pathologists’ prior knowledge of diagnosing cervical
OCT images to generate custom activation maps called PAM. By aligning the
classification models’ activation maps to PAMs during training via the CAM se-
ries, CNN-based models are guided to focus on relevant regions for classification.
The experimental results demonstrate that incorporating the PAM alignment
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Fig. 3. Heat maps generated by GradCAM [11] for CNN models trained with different
methods (“+PAM” denotes a classification model trained with the PAM alignment loss,
and “Ground Truth” means the heat map generated based on prior knowledge).

loss improves model performance for detecting positive cases on three datasets
from different sources. Additionally, ResNet and ConvNeXt models can generate
more accurate and reasonable interpretability with heat maps to assist gynecol-
ogists in cervical OCT diagnosis. In the future, we will extend this method to
Transformers and non-gradient–based visualization techniques to balance gains
in sensitivity with the maintenance of high specificity.
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