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Abstract. Automated breast cancer detection using deep learning based
object detection models have achieved high sensitivity, but often strug-
gles with high false positive rate. While radiologists possess the ability to
analyze and identify malignant masses in mammograms using multiple
views, it poses a challenge for deep learning based models. Inspired by
how object appearance behaves across multiple views in natural images,
researchers have proposed several techniques to exploit geometric corre-
spondence between location of a tumor in multiple views and reduce false
positives. We question the clinical relevance of such cues. We show that
there is inherent ambiguity in geometric correspondence between the
two mammography views, because of which accurate geometric align-
ment is not possible. Instead, we propose to match morphological cues
between the two views. Harnessing recent advances for object detection
approaches in computer vision, we adapt a state-of-the-art transformer
architecture to use proposed morphological cues. We claim that pro-
posed cues are more agreeable with a clinician’s approach compared to
the geometrical alignment. Using our approach, we show a significant im-
provement of 5% in sensitivity at 0.3 False Positives per Image (FPI) on
benchmark INBreast dataset. We also report an improvement of 2% and
1% on AIIMS and benchmark DDSM dataset respectively. Realizing lack
of open source code base in this area impeding reproducible research, we
are publicly releasing source code and pretrained models for this work. 3

1 Introduction

Screening mammography. Breast cancer is one of the few cancers amenable to
screening through Mammography. Mammograms, serving as 2D representations
of a 3D anatomical structure (Fig. 1), are acquired in two views: cranio-caudal
(CC) and medio-lateral oblique (MLO). It is imperative in clinical practice to
see both the views of a breast. A suspicious structure is considered a mass only
if it is seen in both the views, if it is not, it is likely to be only an overlap of
fibro-glandular tissues due to breast compression during image acquisition.
⋆ Corresponding author
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Fig. 1. [Geometric inconsistency]:
(a) shows approach by [12,13] which
uses mammogram landmarks and
cross-view correspondences to localize
cancer (green box). (b), (c), and
(d), represent 3D breast models with
tumors. Top, middle, and bottom
row show front, CC and MLO view
respectively. Notably, (b) mimics (a),
while (c) and (d) reveal significant
variations in tumor location across
different views, emphasizing limited
relevance of geometrical correspon-
dences in reconciling tumor positions. (a) (b) (c) (d)

Deep learning for mammography. Modern deep learning techniques have
significantly advanced automated mammogram triage, improving radiologists’
detection capabilities during screening [13,12,33,14,19]. Ribli et al. [20] employed
the Faster R-CNN model for detecting cancer lesions, while Tang et al. [25]
utilized text embeddings from RoBERTa [11] as a weak supervision technique for
detection. Addressing specific challenges in mammogram analysis, Rangarajan
et al. [16] focused on dense mass detection. In their work [17], they addressed
the detection of small mass cancers, contributing to early diagnosis. However,
achieving high sensitivity at a low false positive rate remains a challenge.
Multiview approach with global fusion. Previous approaches have explored
merging global image-level features from ipsilateral views (CC and MLO) to en-
hance breast cancer detection precision [23,29,26,24,34,13,33,14,12,19]. However,
limited improvement has been observed due to the relatively large size of whole
mammograms compared to the region of interest (ROI).
Focusing on ROI with geometric alignment. Recent techniques advocate
focusing on specific ROIs relying on geometric relationship between views. Liu et
al. proposed [13,12], using pseudo landmarks on mammograms and employing bi-
partite graph convolution to learn geometric and visual features. Yang et al. [33]
used distance of cancer from the nipple area. Wang et al. [28] used asymmetry
in bilateral views, and Ma et al. [14] introduced Cross-View Relation Block
structure to combine geometric and visual features from the two views.
Our claim: geometric alignment is irrelevant. The main thesis of this work
is that geometric alignment cues as used in multi-view works currently are irrel-
evant. We show this visually in Fig. 1. Geometrical Alignment assumes that the
breast is a rigid 3-Dimensional structure projected onto a 2D plane. However in
reality the breast is a pliable organ, and significant differences in mammography
can be generated simply by different levels of compression or rolling the breast
differently for compression during the acquisition of mammograms. More details
regarding how a radiologist interprets mammograms can be found in Chapter 13:
Interpreting the Mammograms of the textbook [7]. Looking at the problem from
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the perspective of 3D reconstruction in computer vision, one can find the 3D
location of a mass by triangulation, only if a correspondence is known. On the
other hand, the geometry cues can at best be used to constrain the correspon-
dence using epipolar lines, but can not be used to establish a correspondence.
Therefore, marker based registration (Fig. 1) as suggested in [12][13] or distance
from nipple area [32][33] is neither a valid correspondence criterion from com-
puter vision perspective, nor clinically relevant from a radiologist’s perspective.
Ren et al. [19] proposed a detection framework that shares similarities with our
work. The authors suggest to refine proposals from a Faster-RCNN model using
a greedy approach for proposal matching. However, their method assigns a pos-
itive label to both FP-FP (false positive) and TP-TP (true positive) proposal
pairs from different views. We note that FP-FP matching could be incorrect, and
unlikely to share visual or geometric features. In contrast, we make a stronger
claim, that any strict geometrical correspondence between the two views (and
not merely FP-FP in [19]) is flawed.
Our Proposal. Acknowledging the limitations of geometric alignment, we pro-
pose a novel approach that matches morphological features between ROIs. This
allows to use ROIs from other view to expand the contextual information with-
out requiring geometric correspondence. This makes our technique highly inter-
pretable to the clinicians, and also acceptable to the computer vision community.
Contributions. (1) We use a novel framework to model the relationship be-
tween two views in mammography which integrates morphological cues from the
ROIs in the other view similar to what a radiologist does. (2) The proposed
approach can be easily integrated with any new deep learning detection mod-
els, making it adaptable to future advancements in the field. We harness the
pluggable design to propose a transformer-based architecture for breast cancer
detection. (3) Significantly advancing the state-of-the-art (SOTA) in detection
accuracy, our model achieves a sensitivity of 0.55 at 0.1 FPI on DDSM dataset
[8] compared to 0.47 by the current SOTA. On our AIIMS dataset we outper-
formed SOTA by 1.5 times in false positive rate. (4) Addressing limitations in
existing research and committing to open science principles, we will release our
source-code and pre-trained models for transparent and reproducible research.

2 Methodology

Generating proposals. We use state-of-the-art FocalNet-DINO [31] module
(referred to as FND hereon), pretrained on natural images, and fine-tune it
for breast cancer detection from a single view. We use Im and Ic to denote
original Medio-Lateral Oblique (MLO) and Cranio-Caudal (CC) view mammo-
grams respectively. We pass Im and Ic separately into FND and generate sev-
eral candidate predictions indicating the abnormality in that region. We use
Pm = {P i

m}mi=1, and Pc = {P j
c }nj=1 to denote these predictions of FND for MLO

and CC views respectively. Here, m and n denote the number of predicted boxes
by the FND for MLO and CC view respectively. Each of the P i

m (or P j
c ) con-

tains details of the predicted box Bi
m, and a confidence score cim. Each Bi

m in
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Fig. 2. Model Overview: This figure illustrates the architecture of our proposed model
for multi-view breast cancer detection. The model takes mammogram images from two
different views as input. The images are processed by an object detection model to
generate initial proposals. These proposals are then refined using a proposal refining
network, which predicts the correlation between the contextual information of proposal
pairs from different views.

turn contains {x, y, w, h} denoting the center (x, y), width, and height of the
predicted box. Whereas cim is a scalar denoting the confidence of the malignancy
in the box region. A confidence of zero indicates a benign abnormality.

Context Embedding Network (CEN). As a radiologist would have done,
we take each prediction from one view (say MLO view for example), and look for
its support from candidate predictions in the other view (CC in this example).
Mathematically, for each proposal in one view, we compute an MCS score with
every other proposal from the other view, leading to Mm×n = [mij ], where mij

denotes the MCS score between P i
m and P j

c . We propose a Siamese Network [1]
to compute the MCS score between the proposals. We crop each of the proposal
regions from the corresponding mammogram, and pass it through a ResNet50
[5] backbone to extract discriminative features from the proposals. To initialize
the weights of ResNet50, we pretrain the model by performing classification on
the bounding boxes predicted from the training set. We concatenate the feature
embedding from the ResNet50 model with the bounding box information. We
pass the concatenated feature vector from three-layer Multi-Layer Perceptron
(MLP) with 1024, 512, and 256 nodes in each layer, respectively. ReLU activa-
tion functions are applied to the first two layers, resulting in a 256 dimensional
embedding vector for each proposal. We use Zi

m to denote the embedding vector
for ith proposal in the MLO view, and similarly Zj

c for the CC view.

Computing MCS score. We use cosine similarity between feature embeddings
of the proposals from two different views. The similarity is computed as:

mij =
Zi
m · Zj

c

|Zi
m| |Zj

c |
. (1)
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Confidence update. After computing the MCS scores between each pair of
proposals from two views, we update the confidence scores as follows:

c̃im = cim +max
j

(
mij cjc

)
, and c̃jc = cjc +max

i

(
mij cim

)
. (2)

The expression essentially means that for a proposal in MLO view we look for
the support in all the CC proposal (indicated by mij). The support is modulated
by the confidence of the CC proposal itself, implying that we are only looking
for proposals indicating malignancy. Recall that no support for malignancy au-
tomatically implies negative support as the confidence threshold of the second
stage is set higher. We then compute the maximum support among the CC view
proposals, and add it to the confidence of the proposal from the MLO view. The
operation is symmetrically done for the proposals from CC view as well. Note
that while ResNet embedding captures visual information, concatenation of box
information allows to use size of the mass also for contextual comparison.
Interpretability of the predictions from proposed model. It may be noted
that similar to radiologists, we do not look for a specific proposal in the other
view, which may have required geometric correspondence. Instead we are look-
ing for any proposal in the other view which support the current observation
morphologically in the view being processed. Hence, we simply take maximum
of the MCS scores, and add it to the confidence of current candidate proposal.
As we will show later in the experiments section, this keeps the proposed model
highly interpretable to the clinicians, as it is possible to visualize which region
in the first view our model is attending to, and which region in the other view
supported the observation. Further mimicking the clinical process, if there is
no supporting evidence in the other view, a Radiologist considers it as a neg-
ative support for the malignancy. Similarly, in our model as well, this leads to
a negative maximum MCS score, or minimal change in the current malignancy
confidence for the region. We keep a lower confidence threshold for detection in
the 1st stage, and higher in the 2nd stage. Hence, no support (lower MCS score)
from the other view ends up pushing the region below the 2nd stage threshold,
making it equivalent to a negative support. Fig. 2 gives the pictorial overview.
Implementation Details. The CEN is trained end-to-end using the cross en-
tropy loss function for each predicted proposal. The proposed framework doesn’t
attempt to change the bounding box coordinates of a proposal, and hence no
regression loss is used. The learning rate is set to 1e-05, and we train the network
for 100 epochs on a server with 8 NVidia V100, 32GB GPUs.

3 Results and Discussions

Datasets. We use following datasets in our experiments: (1) DDSM-CBIS
[8]: The public dataset contains 1324 mammography image pair, of which we
use 1054 pairs for training (472 malignant, 582 benign) and 270 for testing (109
malignant, 161 benign). (2) INBreast [15]: Consists of 200 image pairs from
115 patients, of which 41 are malignant, and 159 benign. (3) AIIMS Dataset:
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It is a private diagnostic dataset containing 3,501 mammograms, from 1580 pairs
(284 malignant, 1296 benign). We used 445 pairs for training (183 malignant,
262 benign) and 1135 pairs for testing (101 malignant, 1034 benign).

Table 1. Comparison with previous state-of-the-art breast cancer detection ap-
proaches. Please refer to main text for details.

Method Venue Sensitivity@(their FPI,our FPI)

Camp. et at.[2] PMB’04 80@(1.10,0.33) - -

Eltonsy et at [4] TMI’07 92@(5.40,1.17) 88@(2.40,0.68) 81@(0.60,0.36)

Sampat et at. [21] MedPhy’08 88@(2.70,0.68) 85@(1.50,0.47) 80@(1.00,0.33)

CVR-RCNN [14] ICPR’21 92@(4.40,1.17) 88@(1.90,0.68) 85@(1.20,0.47)

BG-RCNN [13] CVPR’20 95@(4.40,1.96) 92@(1.90,1.17) 89@(1.20,0.73)

MommiNet-v2 [33] MIA’21 90@(2.00,0.87) 85@(1.00,0.47) 80@(0.50,0.33)

AG-RCNN [12] TPAMI’21 96@(4.40,2.39) 92@(1.90,1.17) 90@(1.20,0.87)

Evaluation metric. We use widely reported Free-Response Receiver Operat-
ing Characteristic (FROC) curve [3] for our experiments. The curve provides
a graphical representation of sensitivity/recall values at different false positives
per image (FPI). We follow related works in this area [16], and consider a pre-
diction as true positive if center of the predicted bounding box lies within the
ground-truth bounding box. Other than detection region, we also evaluate the
performance of proposed model for classification task. We report results in terms
of Accuracy, F1-Score, Precision, Recall, and AUC score. We classify an image
as malignant if there is at least one bounding box with malignant prediction.

3.1 Comparison with SOTA breast cancer detection methods

AG-RCNN [12] is an existing benchmark work on mammogram detection but
with different experiment settings, we follow their methodology to split the
DDSM dataset for training, validation, and testing set. Results are shown in
Tab. 1 where we compare the FROC metric for various approaches using single-
view [2,4,21], multi-view using ipsilateral views [14,12,13] and tri-view using both
ipsilateral and bilateral views[33]. These are the only methods to our knowledge
reporting results on the DDSM dataset. Rest of the methods have reported re-
sults on private datasets and do not release their model/code, making it infeasible
to compare. To effectively evaluate with prior methods, we keep the same re-
call/sensitivity value and compare the FPI values (lower is better). From Tab. 1
it is evident that our method achieves significantly low FPI at same recall, and
hence outperforms all the previous state-of-the-art methods.

Previous methods often rely on subsets of public datasets to demonstrate
their research findings. For instance, Yan et al. [30] reported a sensitivity of 0.96
at 0.23 FPI for the INBreast dataset, while our approach achieves a sensitivity of
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Table 2. Detection (recall at different FPI) and classification comparison results.
Please refer to main text for details.

Detection Results Classification Results

Model Name Venue R@0.025 R@0.05 R@0.1 R@0.3 R@0.5 R@1 Accuracy F1-Score AUC-Score

Faster RCNN[18] TPAMI’17 0.02 0.04 0.07 0.13 0.22 0.29 0.620 0.294 0.604
DN DEF.[9] CVPR’22 0.32 0.37 0.40 0.46 0.48 0.53 0.756 0.675 0.803

DDSM YOLO-V8[6] Ultralytics’23 0.11 0.14 0.20 0.32 0.36 0.42 0.644 0.394 0.601
DINO [35] ICLR’23 0.22 0.27 0.39 0.55 0.62 0.68 0.757 0.644 0.799
FND[31] NeurIPS’22 0.29 0.35 0.47 0.70 0.76 0.86 0.733 0.654 0.789
FND + OURS 0.36 0.45 0.55 0.71 0.77 0.84 0.761 0.676 0.809

Faster RCNN[18] TPAMI’17 0.20 0.26 0.32 0.47 0.53 0.66 0.920 0.288 0.761
DN DEF.[9] CVPR’22 0.64 0.72 0.74 0.78 0.81 0.82 0.952 0.680 0.949

AIIMS YOLO-V8[6] Ultralytics’23 0.19 0.27 0.38 0.51 0.61 0.71 0.916 0.212 0.779
DINO[35] ICLR’23 0.13 0.33 0.41 0.48 0.61 0.91 0.851 0.260 0.649
FND [31] NeurIPS’22 0.64 0.78 0.84 0.91 0.93 0.97 0.949 0.706 0.964
FND + OURS 0.70 0.80 0.86 0.93 0.95 0.96 0.958 0.747 0.976

Faster RCNN[18] TPAMI’17 0.16 0.19 0.25 0.40 0.45 0.54 0.828 0.297 0.661
DN Def[9] CVPR’22 0.17 0.26 0.39 0.44 0.47 0.51 0.825 0.526 0.772

INBreast YOLO-V8[6] Ultralytics’23 0.02 0.03 0.06 0.08 0.10 0.12 0.258 0.346 0.541
DINO[35] ICLR’23 0.20 0.30 0.35 0.54 0.65 0.82 0.820 0.275 0.738
FND [31] NeurIPS’22 0.28 0.46 0.56 0.73 0.75 0.82 0.865 0.641 0.869
FND + OURS 0.34 0.42 0.63 0.78 0.82 0.84 0.872 0.666 0.887

Fig. 3. First and second images show FROC and AUC curves respectively on the
INBreast dataset. Third and fourth images show the same on AIIMS dataset.

0.94 at merely 0.025 FPI, representing a tenfold improvement, in one of our cross-
validation splits. Similarly, Chu et al. [27] reported Sensitivity@FPI values of
87.5@0.5, 91.5@1.0, and 94@2.0 on their DDSM data split. Our method surpasses
this baseline, achieving values of 92.2@0.5, 94.6@1.0, and 97.5@2.0 on our custom
split. However, we note that a fair comparison is challenging, as both references
did not use standard test data, and dataset split details are undisclosed.

3.2 Comparison with natural image based techniques

Quantitative results. Tab. 2 shows results from various techniques on the
three datasets. For AIIMS dataset, we use a 0.25:0.03:0.72 train-val-test split.
For DDSM we use the standard split as described earlier. The results show that
FDN itself improves most of the SOTA techniques. Our CEN module further
improves the FDN results, particularly at low FPI rates. For INBreast, since
the dataset is small, it is not possible to train a model using only the INBreast.
Hence, we conduct two experiments. In Tab. 2 we show the results when using
AIIMS dataset for training and whole INBreast dataset for inference. In Tab. 3,
we show results of training on AIIMS dataset, and 5-fold cross-validation on
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Fig. 4. Illustrative results of the proposed system on diverse datasets (1st row: private
dataset, 2nd row: DDSM, 3rd row: INBreast). Ground truth bounding boxes are de-
picted in blue, while red bounding boxes represent predictions from the FND model
and green bounding boxes represent predictions from the proposed method. Each sub-
figure comprises four mammography images, including a set of MLO and CC views.
The first pair showcases the current SOTA(FND) predictions, while the second pair
displays the predictions of the proposed model. Notably, the proposed model leverages
contextual cues from the complementary view, leading to improved predictions.

Table 3. Cross-validation results on INBreast, showing mean and standard deviation
in sensitivity values at different FPI.

FPI 0.025 0.050 0.100 0.300 1.000

FND [31] 0.534(±0.250) 0.630(±0.192) 0.745(±0.109) 0.827(±0.114) 0.874(±0.110)
FND+OURS 0.601(±0.230) 0.651(±0.190) 0.807(±0.080) 0.873(±0.089) 0.927(±0.041)

INBreast(finetuning on 4-folds, and testing on 5th fold). We report average and
standard deviation of sensitivity values obtained at various FPI values.
Classification Performance. In addition to evaluating for detecting cancer-
ous regions (region predictions are important to ensure interpretability), we also
evaluated our model for image classification task. Results, AUC plots, and visu-
alizations, are shown in Tab. 2, Fig. 3 and Fig. 4 respectively.
Ablation study. Supplementary material contains results of following ablation
studies: (1) Effect of refinement module on detected proposals, (2) Integration
with baselines[9,10,6] other than FND, (3) Using other texture cues[22] in CEN,
(4) Using only proposal size and removing location information in the CEN, and
(5) Using attention-based context modeling in the CEN.

4 Conclusion

Current techniques for multiview breast cancer detection, either use full image
fusion, which is not effective, or use geometric alignment which is clinically irrel-
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evant. We propose a new framework for fusing ipsilateral mammography views
based on morphological features from ROIs. This allows to focus on interpretable
ROIs, yet do not use problematic geometric alignment. Our framework can work
with multiple deep neural detection backbones, and achieves significant improve-
ments in recall, particularly at low false positives per image (FPI) levels.
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