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Abstract. Polyp segmentation in colonoscopy images is essential for
preventing Colorectal cancer (CRC). Existing polyp segmentation mod-
els often struggle with costly pixel-wise annotations. Conversely, datasets
can be annotated quickly and affordably using weak labels such as points.
However, utilizing sparse annotations for model training remains chal-
lenging due to the limited information. In this study, we propose a
TextPolyp approach to tackle this issue by leveraging only point an-
notations and text cues for effective weakly-supervised polyp segmen-
tation. Specifically, we utilize the Grounding DINO algorithm and Seg-
ment Anything Model (SAM) to generate initial pseudo-labels, which are
then refined with point annotations. Furthermore, we employ a SAM-
based mutual learning strategy to effectively enhance segmentation re-
sults from SAM. Additionally, we propose a Discrepancy-aware Weight
Scheme (DWS) to adaptively reduce the impact of unreliable predictions
from SAM. Our TextPolyp model is versatile and can seamlessly inte-
grate with various backbones and segmentation methods. Importantly,
the proposed strategies are used exclusively during training, incurring no
additional computational cost during inference. Extensive experiments
confirm the effectiveness of our TextPolyp approach. Our code is avail-
able at https://github.com/taozh2017/TextPolyp.
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1 Introduction

Colorectal cancer (CRC), one of the most common types of cancer worldwide,
is highly associated with colon polyps. Early identification and eradication of
polyps can prevent further detriment to adjacent tissues and greatly reduce the
incidence of colorectal cancer. Given its importance, numerous polyp segmenta-
tion models [6,29,17,25,27] have demonstrated promising performance. However,
as shown in Fig. 1, several existing models are fully-supervised and heavily rely
on pixel-wise annotations, which is time-consuming and expensive.

To address the challenge, weakly-supervised methods based on sparse anno-
tations in various forms have attracted wide attention and proven to be effective
solutions for handling limited annotated data. For example, Chen et al. [4]
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Fig. 1. Comparison of fully-supervised polyp segmentation method with our point-
supervised model.

introduced a causal CAM method that utilizes image-level labels to overcome
the challenges of unclear boundaries between the target foreground and back-
ground. Liu et al. [16] presented a weakly-supervised segmentation method
that only requires scribble supervision for detecting COVID-19 infections in
CT slices. This method is enhanced with uncertainty-aware self-ensembling and
transformation-consistent techniques. In addition to image-level and scribble la-
bels, Wei et al. [23] proposed a weakly-supervised polyp segmentation model
based on bounding box annotations. However, variations in polyp size, shape,
and indistinct boundaries make segmentation with sparse annotations signifi-
cantly more challenging. Building upon the fusion of classical edge detection
techniques, Bui et al. [3] proposed MEGANet, tailored specifically for polyp seg-
mentation within colonoscopy images. Recently, the Segment Anything Model
(SAM) [14] has demonstrated remarkable performance in segmentation. Some
studies [28,12,10] have incorporated SAM into different segmentation. While
SAM showcases zero-shot transfer capabilities, it may not excel in certain down-
stream tasks, such as medical image segmentation. Risab [2] utilized SAM with
text prompting for robust and more precise polyp segmentation. Furthermore,
rare works focus on utilizing SAM to enhance weakly-supervised polyp segmen-
tation. Therefore, further research is necessary to investigate the effective inte-
gration of SAM into weakly-supervised polyp segmentation approaches.

In this paper, we propose TextPolyp, a novel method for weakly-supervised
polyp segmentation that relies solely on point annotations with text cues. Ini-
tially, we utilize large models to generate pseudo-labels through Text-induced
Pseudo-label Generation and refine these labels using a strategy for optimization.
Subsequently, we employ a SAM-based Mutual Learning strategy to engage in
mutual consistency supervision to boost segmentation capabilities. Additionally,
we introduce a Discrepancy-aware Weight Scheme (DWS) to dynamically adjust
weights and mitigate the impact of imprecise predictions from SAM. Notably,
TextPolyp is a plug-and-play module that harnesses SAM to enhance the perfor-
mance of existing segmentation models or attractive backbones. Through com-
prehensive experiments, we demonstrate the effectiveness of TextPolyp, achiev-
ing comparable performance across various baseline models.

2 Methodology

Fig. 2 presents the overview structure of our proposed model. We utilize com-
monly employed and effective backbones or segmentation methods (e.g., UNet [18],
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Fig. 2. Overview of the proposed framework. Our approach involves utilizing SegNet
and SAM to produce masks (Sbas and Sori) from a given image, while the gamma-
corrected image also serves as input for SAM to generate Sgam. Additionally, we com-
bine Sbas with the point annotationGpoi to form a box prompt for enhancing the quality
of both Sori and Sgam. Mutual consistency supervision is implemented between Sori

and Sgam. Finally, Sori and Sgam along with the point annotation and pseudo-label,
guide the training of Sbas, which represents the ultimate output of our model.

Res2Net [7], PraNet [6], etc.) as the baseline segmentation model (denoted “Seg-
Net”). Specifically, we employ the text-induced pseudo-label generation module
to produce pseudo-labels. Subsequently, for the input image Iori ∈ RH×W×3,
we apply gamma correction for Iori to obtain Igam ∈ RH×W×3. Afterward, Iori
and Igam are fed into the SAM-based mutual learning network to acquire two
segmentation masks. Further, we combine the segmentation map Sbas from the
SegNet with the point annotations to form the box prompt, which is then sup-
plied to SAM to produce Sori and Sgam. Finally, the segmentation maps can be
supervised by point annotations and pseudo-labels.

2.1 Text-induced Pseudo-label Generation

In alignment with standard weakly-supervised segmentation tasks, we initially
acquire pseudo-labels and utilize them for network training. To enhance the su-
pervisory signal obtained from point annotations, we incorporate the Grounding
DINO [15] algorithm and SAM to generate the initial pseudo-labels. Specifically,
as illustrated in Fig. 3 (a), we input a generic text description of polyps (e.g.,
“A colorectal polyp is an abnormal growth on the lining of the colon or rec-
tum. Some polyps are flat while others have a stalk. Polyps come in various
shapes, which are sometimes flat and round, yet usually irregular. The color of
the polyp is similar to the surrounding normal tissue, and the polyp lacks a
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Fig. 3. Illustration of the processing steps for pseudo-label generation.

distinct boundary”) into the Grounding DINO to produce a variety of detection
boxes B = {Bi}Ni=1 for each image. However, some boxes are inaccurate or cover
numerous background regions. Hence, it is crucial to filter out misidentified boxes
to ensure the most precise inclusion of polyps. Additionally, in situations where
Bi ∩Bj = Bi or Bi ∩Bj = Bj with i̸=j, we must decide whether to retain Bi or
Bj to eliminate redundant boxes. To address this issue, we refine these detected
boxes from Grounding DINO using point annotations. Specifically, we utilize the
foreground point pa (the blue point in Fig. 3 (a)) within the point annotation
to identify the box containing polyps and exclude misidentified boxes. Simulta-
neously, we use pb to eliminate extraneous boxes. Consequently, we can obtain
refined boxes B∗ = {Bi ∈ B | pa ∈ Bi, pb /∈ Bi}, which are fed into the SAM
along with the point annotations pa and pb to obtain the initial pseudo-labels.

Pseudo-label Refinement. While SAM demonstrates remarkable segmen-
tation proficiency, it lacks reasonable judgment in output results without any
prompts, leading to low-quality pseudo-labels. As depicted in Fig. 3 (b), SAM
not only focuses on the entire image but also emphasizes details, including impu-
rities within polyp images, which can significantly impact the accuracy of pseudo-
labels. Consequently, we introduce a sound methodology to rectify pseudo-labels.
When a small background region is present within the boundary of the polyp
area, we regard this background as an integral part of the polyp and proceed
with step (2) to fill the target foreground. Furthermore, we exclude small fore-
ground areas (radius ≤ 5 pixels) that are isolated and proceed with step (3) to
eliminate these areas.

2.2 SAM-based Mutual Learning

It is crucial to supply SAM with effective and accurate prompts for producing
more promising segmentation results.

Prompt Generation. As depicted in Fig. 2, to improve the quality of
segmentation masks produced by SAM, we utilize the point annotations and
segmentation maps obtained by the SegNet to produce bounding box prompts.
However, the bounding box derived from SegNet’s segmentation map may not
accurately encompass the polyp region. On the other hand, although the point
annotation provides limited information about the target pixels, it accurately
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pinpoints the position of the polyp, enabling precise target localization. Conse-
quently, we devise an integrated strategy to generate a suitably sized bounding
box by{

Boxp = {P (x, y)± axis, axis = δ/2}, if max(Boxs|w|, Boxs|h|) < δ,

Boxp = {P (x, y)± axis, axis = δ}, if max(Boxs|w|, Boxs|h|) ≥ δ,

(1)
where Boxs denotes the bounding box obtained from the segmentation map of
the SegNet, and Boxs|w| and Boxs|h| represent the width and height of the box,
respectively. The tuning parameter δ is used to derive a relatively accurate box
prompt. Moreover, P (x, y) represents the coordinate of the point. Consequently,
we can derive an integrated box Boxp. Then, to ensure that the current box
encompasses the target regions (i.e., polyp), we expand the original box Boxs

as Box
′

s = {Boxs(|w|)± δ/20, Boxs(|h|)± δ/20}. Therefore, the resulting inter-
secting region serves as the final prompt box, denoted as Box = Boxp ∩Box

′

s.
Mutual Consistency Supervision. In light of the weak supervision labels,

we develop a dual SAM structure. This architecture allows the two outputs from
the two SAM decoders to engage in mutual learning and supervision. Specifi-
cally, given an image Iori ∈ RH×W×3, we implement gamma correction on Iori
to obtain Igam ∈ RH×W×3. Then, Iori and Igam are fed to the dual SAM net-
works for training and get two segmentation masks Sori and Sgam. After that,
we put Iori and Igam into the encoders individually and unfreeze the last two
layers to fine-tune SAM, thereby allowing them to acquire distinctive features.
Additionally, they share the same prompt to ensure overall consistency.

Moreover, to ensure the overall information is complementary between the
original image branch and the gamma branch, we modify the mask genera-
tion process by applying the Sigmoid activation function and fine-tuning the
mask decoder to produce the segmentation masks (Sori and Sgam). It permits
each branch to get the supervision of the other branch, thus retaining richer
features. Inspired by [9], we adopt ℓ1 loss and the structural similarity index
measure (SSIM) for the supervision, which can be defined as LCON (S1, S2) =
αL1(S1, S2)+(1−α)Lssim(S1, S2), where S1 and S2 denote two prediction maps,
and α is a trade-off parameter. Therefore, the mutual consistency loss is ex-
pressed as follows:

Lmut = LCON (Sori, Sgam). (2)

2.3 Discrepancy-aware Weight Scheme

To minimize the impact of inaccuracies in segmentation masks generated by
SAM, we propose a Discrepancy-aware Weight Scheme (DWS). This scheme can
adaptively weight the loss between the segmentation masks produced by SAM
and SegNet, aiming to reduce the influence of locations with significant discrep-
ancies between the two maps from dual SAM. Specifically, given the distinct out-
puts (Sori and Sgam), we assume that the overlapping areas of the two maps rep-
resent the more reliable polyp regions. Therefore, for regions with substantial dif-
ferences between the maps, we reduce their weights to enhance overall precision.
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To achieve this, we first calculate the average map, i.e., Savg = 1
2 (Sori + Sgam),

and then determine the discrepancies between each segmentation mask and the
average. Using these differences, we can derive the weight map for Sori and Sgam

as follows:

ωori = exp−|Sori−Savg|, ωgam = exp−|Sgam−Savg|. (3)

We then integrate each weight map into the loss function to minimize the
influence of unreliable prediction locations. Given a predicted map P and a
supervised map S, we incorporate each weight map into the formulations of the
BCE loss and IoU loss as follows:

Lω
BCE = − 1

H ×W

∑
i∈H,j∈W

[sij · log(pij) + (1− sij) log(1− pij)] · ωij ,

Lω
IoU = 1−

∑
i∈H,j∈W (pij · sij · ωij)∑

i∈H,j∈W (pij + sij) · ωij −
∑

i∈H,j∈W (pij · sij · ωij)
.

(4)

For convenience, we denote LSEG = Lω
BCE + Lω

IoU . Due to the presence of
completely failed segmentation masks obtained by SAM, we first discard the
erroneous segmentation maps and then utilize the remaining maps to constrain
the SegNet model. As a result, the loss function can be formulated as follows:

Lbas = LSEG(Sbas, Sori) + LSEG(Sbas, Sgam), (5)

where ωori and ωgam are applied for LSEG(Sbas, Sori) and LSEG(Sbas, Sgam),
respectively.

Overall Loss Function. We employ partial cross entropy loss [24] (de-
noted as LPCE) to quantify the disparities between the segmentation masks
and point annotations. As a result, we have the loss function for the point su-
pervision as Lpoi = LPCE(Sbas, Gpoi), where Gpoi denotes point annotations.
Besides, we compute the consistency loss between Sbas and Gpse, i.e., Lpse =
LCON (Sbas, Gpse). Moreover, we compute the consistency loss between the pseudo-
labels (Gpse) and the SAM’s masks, which can be expressed as follows:

Lpsa = LCON (Sori, Gpse) + LCON (Sgam, Gpse). (6)

Finally, the overall loss function can be formulated by

Ltotal = Lbas + Lpsa + Lmut + Lpoi + Lpse. (7)

3 Experiments

Datasets. Five public colonoscopy datasets are adopted in this study, namely
CVC-300 [21], Kvasir [13], ETIS-LaribPolypDB [19], CVC-ClinicDB [1], and
CVC-ColonDB [20]. Following the setting in [6], 1450 images (900 Kvasir im-
ages and 550 CVC-ClinicDB images) are selected for the training set, and the
remaining images are used for testing.
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Table 1. Quantitative results on two seen datasets. “Poi.” means the supervision with
point annotation, “Bac.” means backbone, and “Seg.” is the existing model designed
for polyp segmentation.

Methods
CVC-ClinicDB Kavsir

Dice IoU Sα Fw
β Dice IoU Sα Fw

β

Poi.

PSOD [8] 0.343 0.261 0.412 0.333 0.605 0.480 0.668 0.603

SCOD [11] 0.606 0.505 0.753 0.579 0.613 0.546 0.742 0.610

SCWS [24] 0.666 0.567 0.759 0.566 0.599 0.501 0.645 0.522

WSSOD [26] 0.617 0.458 0.729 0.587 0.563 0.412 0.676 0.546

Bac.

Ours+UNet [18] 0.739 0.650 0.828 0.719 0.749 0.656 0.819 0.737

Ours+Res2Net [7] 0.822 0.744 0.879 0.807 0.818 0.737 0.862 0.814

Ours+PVT [22] 0.833 0.761 0.890 0.819 0.848 0.776 0.882 0.848

Seg.
Ours+PraNet [6] 0.829 0.758 0.888 0.814 0.831 0.767 0.870 0.827

Ours+Polyp-PVT [5] 0.838 0.766 0.893 0.825 0.853 0.786 0.886 0.854

Image PSOD SCOD SCWS WSSOD Ours
+UNet

Ours
+Res2Net

Ours
+Polyp-PVT

GT

Fig. 4. Visualization results of different methods on the polyp segmentation.

Implementation Details. The overall framework is implemented in Py-
Torch and conducted on NVIDIA GeForce RTX3090 GPU. All input images are
uniformly resized to 320×320. To optimize the training process, we adopt trian-
gular warm-up and decay strategies optimized by SGD with the momentum of
0.9, and weight decay of 5e-4, and the learning rate is set to a maximum of 1e-2
and a minimum of 1e-5. Our model is trained for 100 epochs with a batch size
of 8. Additionally, δ and α are set to 120 and 0.85, respectively. For evaluation,
we adopt four commonly adopted metrics [6], namely Dice coefficient (Dice),
Intersection over Union (IoU), S-measure (Sα), and weighted F-measure (Fw

β ).
Results Comparison. We compare the proposed TextPolyp with recent

methods that are trained with weak annotations. PSOD [8] is an existing point-
supervised method, and we retrain it on polyp datasets following its original
settings. The other methods, SCOD [11], SCWS [24], and WSSOD [26] are
weakly-supervised approaches based on scribble annotations. We replace the
scribble supervision with points and retrain them according to the original
experiment setup. TextPolyp is trained using three different backbones, i.e.,
UNet [18], Res2Net [7], and PVT [22]. Additionally, we apply TextPolyp to ex-



8 Zhao et al.

Table 2. Quantitative results on three unseen datasets.

Methods
CVC-300 CVC-ColonDB ETIS-LaribPolyp

Dice IoU Sα Fw
β Dice IoU Sα Fw

β Dice IoU Sα Fw
β

Poi.

PSOD [8] .485 .365 .588 .475 .304 .214 .351 .284 .255 .196 .330 .242

SCOD [11] .623 .517 .768 .618 .518 .423 .686 .521 .351 .275 .580 .347

SCWS [24] .621 .506 .725 .589 .546 .449 .675 .444 .428 .352 .588 .324

WSSOD [26] .655 .520 .781 .612 .479 .359 .667 .442 .407 .290 .642 .343

Bac.

Ours+UNet [18] .697 .621 .832 .681 .517 .437 .709 .510 .361 .297 .643 .352

Ours+Res2Net [7] .831 .752 .912 .797 .698 .611 .813 .662 .645 .557 .802 .579

Ours+PVT [22] .844 .765 .911 .816 .723 .641 .830 .698 .665 .591 .810 .627

Seg.
Ours+PraNet [6] .832 .756 .914 .800 .718 .628 .819 .686 .642 .561 .808 .599

Ours+Polyp-PVT [5] .846 .770 .916 .817 .730 .644 .832 .701 .673 .591 .816 .629

Table 3. Ablation results with different settings.

Bac. Settings
CVC-ClinicDB CVC-300 CVC-ColonDB

Dice IoU Sα Dice IoU Sα Dice IoU Sα

UNet

w/o SAM 0.572 0.436 0.725 0.571 0.454 0.747 0.447 0.343 0.681

w/o Gamma branch 0.679 0.596 0.796 0.662 0.564 0.808 0.502 0.428 0.703

w/o DWS 0.734 0.644 0.822 0.676 0.584 0.815 0.513 0.434 0.708

Ours 0.739 0.650 0.828 0.697 0.621 0.832 0.517 0.437 0.709

Res2Net

w/o SAM 0.726 0.641 0.828 0.694 0.600 0.825 0.574 0.482 0.734

w/o Gamma branch 0.781 0.700 0.860 0.792 0.708 0.890 0.659 0.572 0.793

w/o DWS 0.810 0.724 0.874 0.818 0.731 0.898 0.681 0.596 0.803

Ours 0.822 0.744 0.879 0.831 0.752 0.912 0.698 0.611 0.813

isting polyp segmentation models, including PraNet and Polyp-PVT. Table 1
and Table 2 present quantitative results for different methods. It is evident
that our TextPolyp model, when integrated with the base UNet backbone, out-
performs other specifically designed weakly-supervised segmentation methods,
highlighting the effectiveness of our approach. Furthermore, when TextPolyp is
combined with different backbones, our model with PVT yields superior perfor-
mance compared to that with UNet or Res2Net. Additionally, our model incor-
porating Polyp-PVT outperforms the one with PraNet. Fig. 4 illustrates some
predictions based on different methods. Compared to other point-supervised and
scribble-supervised methods, the segmentation models incorporating TextPolyp
not only locate the position of polyps accurately but also achieve more complete
segmentation for larger polyps, resulting in more accurate masks.

Ablation Study. To assess the effectiveness of our method, we conduct
three ablation experiments using two different backbones: UNet and Res2Net.
• Effectiveness of SAM: We exclude the SAM module and train the weakly-
supervised model solely with point annotations, denoted as “w/o SAM”. As
shown in Table 3, the degradation in performance without SAM indicates its
effectiveness. SAM successfully combines the SegNet to achieve improved seg-
mentation performance. • Effectiveness of Mutual Consistency Supervi-
sion: By removing the gamma branch (denoted as “w/o Gamma branch”), our
method loses the capability for mutual supervision, and the DWS component
is also eliminated. The results demonstrate a decline in performance without
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the gamma branch, underscoring its critical role in achieving optimal results.
• Effectiveness of DWS: We remove the DWS component from our proposed
model, denoted as “w/o DWS”. In this scenario, we only utilize the common
BCE loss and IoU loss to measure the discrepancy between predicted maps from
the SegNet and SAM’s mask maps. As illustrated in Table 3, the results confirm
the effectiveness of the proposed DWS component. Through these ablation ex-
periments, we validate the effectiveness of SAM, mutual consistency supervision,
and the DWS component in our approach.

4 Conclusion

We propose TextPolyp, a versatile point-supervised polyp segmentation model
derived from SAM. TextPolyp initially leverages Grounding DINO and SAM to
generate pseudo-labels. Furthermore, we present the discrepancy-aware weight
scheme with Dual-SAM, utilizing two maps from SAM to evaluate reliable pixels
for model training. Experimental results show that TextPolyp surpasses other
weakly-supervised methods. Notably, TextPolyp only necessitates point anno-
tations and text cues, reducing the dependence on pixel-level annotations for
segmentation models. Additionally, TextPolyp serves as a plug-and-play module
that can seamlessly integrate into various backbones and segmentation methods.
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