
EndoFinder: Online Image Retrieval for
Explainable Colorectal Polyp Diagnosis

Ruijie Yang1,2,3†, Yan Zhu4,5†, Peiyao Fu4,5, Yizhe Zhang6, Zhihua Wang3�,
Quanlin Li4,5, Pinghong Zhou4,5, Xian Yang7, and Shuo Wang1,2�

1Digital Medical Research Center, School of Basic Medical Sciences, Fudan
University, Shanghai, China

2Shanghai Key Laboratory of MICCAI, Shanghai, China
3Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China

4Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan
University, Shanghai, China

5Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
6School of Computer Science and Engineering, Nanjing University of Science and

Technology, Nanjing, Jiangsu, China
7Alliance Manchester Business School, The University of Manchester, Manchester,

UK

Abstract. Determining the necessity of resecting malignant polyps dur-
ing colonoscopy screen is crucial for patient outcomes, yet challenging due
to the time-consuming and costly nature of histopathology examination.
While deep learning-based classification models have shown promise in
achieving optical biopsy with endoscopic images, they often suffer from
a lack of explainability. To overcome this limitation, we introduce End-
oFinder, a content-based image retrieval framework to find the ’digital
twin’ polyp in the reference database given a newly detected polyp.
The clinical semantics of the new polyp can be inferred referring to
the matched ones. EndoFinder pioneers a polyp-aware image encoder
that is pre-trained on a large polyp dataset in a self-supervised way,
merging masked image modeling with contrastive learning. This results
in a generic embedding space ready for different downstream clinical
tasks based on image retrieval. We validate the framework on polyp
re-identification and optical biopsy tasks, with extensive experiments
demonstrating that EndoFinder not only achieves explainable diagnos-
tics but also matches the performance of supervised classification models.
EndoFinder’s reliance on image retrieval has the potential to support di-
verse downstream decision-making tasks during real-time colonoscopy
procedures.

Keywords: Polyp diagnosis · Content-based image retrieval · Semantic
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1 Introduction

Colorectal cancer (CRC) presents a major public health challenge, account-
ing for approximately 10% of all cancer incidences worldwide and ranking as
the second leading cause of cancer-related deaths [1–3]. Colonoscopy stands as
the cornerstone for CRC prevention and early detection, primarily through the
identification and subsequent management of polyps. During these procedures,
clinical endoscopists face critical decisions on whether to remove potentially
malignant polyps or opt for active surveillance of benign ones [24]. While the
histopathological analysis of biopsied samples serves as the definitive diagnostic
method, it is not immediately available during endoscopic examinations. Conse-
quently, clinicians often rely on optical diagnosis through endoscopic imagery for
on-the-spot decision-making regarding small colorectal polyps. Artificial intelli-
gence (AI)-based optical diagnosis of polyps has been developed for augmented
decision-making during colonoscopy procedures [29]. However, the predominant
AI models, characterized by their supervised learning and ”black box” nature,
suffer from a lack of interpretability. These inductive models demand extensive
annotated image datasets for training and need to be re-trained as new data
and annotation are acquired, posing significant challenges for scalability and
continuous clinical application.

To mitigate the limitations of existing classifiers, we present EndoFinder
(Figure 1), an image retrieval framework enhancing diagnostic explainability for
colorectal polyps. Inspired by the ’digital twin’ concept, EndoFinder identifies a
matching ’digital twin’ for new polyps in a reference database containing histor-
ical data on similar polyps. This approach facilitates interpretable and informed
decision-making by leveraging past diagnostic outcomes, offering a scalable so-
lution for real-time polyp diagnosis.

Fig. 1. Workflow of the proposed EndoFinder framework. Endoscopic images are en-
coded into polyp-aware semantic features and discretised into hash codes for fast re-
trieval. The decision-making is augmented by referring to the historical information of
the ’digital twin’ polyp in the database.
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Related work. Here we review the state-of-the-art performance of optical polyp
diagnosis and the medical application of Content-Based Image Retrieval (CBIR).
Supervised polyp diagnosis. Supervised classifiers, particularly those based
on deep learning, have matched the expertise of professional endoscopists in
optical polyp diagnosis. Ribeiro et al. were pioneers in employing convolutional
neural networks (CNNs) for classifying colorectal polyps. Chen et al. developed a
system of computer-aided diagnosis system utilizing an Inception v3 architecture
to process narrow-band imagery of small colorectal polyps, achieving near-novice
doctor accuracy at greater inference speeds. [32]. Yamada et al. developed an AI
system based on ResNet152, outperforming expert endoscopists in both internal
and external validation [29]. Recently, Krenzer et al. achieved leading accuracy
by implementing a method that involves detecting and cropping polyps before
classifying them using a Vision Transformer (ViT) [34]. Despite the satisfactory
performance of these varied architectural approaches, their clinical applicability
is hampered by issues such as limited explainability and vulnerability to data’s
long-tail distribution.

Content-based image retrieval for medical image analysis. Unlike induc-
tive methods that derive general rules from the training set, content-based image
retrieval presents a transductive alternative to medical image analysis [20, 23].
Wang et al. pioneered a CBIR system that facilitates the retrieval of pertinent
whole-slide images from vast historical databases [9]. Intrator et al. employed
the contrastive learning method SimCLR for polyp representation, advancing
polyp video re-identification capabilities [31]. A crucial aspect of CBIR involves
constructing an effective embedding space and developing efficient search algo-
rithms for identifying nearest neighbors. For natural images, the focus is in-
creasingly shifting towards learning general and robust representations through
self-supervised learning (SSL) on extensive datasets. Pizzi et al. enhanced image
copy detection by training CNNs using contrastive learning and score normaliza-
tion to achieve high-quality embeddings [12]. Similarly, El-Nouby et al. harnessed
Vision Transformer (ViT) networks, integrating InfoNCE with entropy regular-
izers for improved learning outcomes [7]. To expedite search speeds, Guan et al.
devised a method for training CNNs with attention maps to generate semantic
hash codes, enabling rapid image retrieval [8]. However, it remains less explored
to construct a universal representation for polyp image retrieval.

Contributions. Our contributions are threefold: Firstly, we propose a novel
adaptive self-supervised learning method that merges masked image modeling
with contrastive learning to create universal polyp-aware representations, signifi-
cantly improving the precision of polyp re-identification. Secondly, we introduce
an image retrieval approach for explainable polyp diagnosis achieving SOTA
performance compared to supervised classifiers. Lastly, we developed a hashing
technique to realize real-time image retrieval without accuracy loss.
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2 Methods

2.1 Problem Formulation

Let us denote a task-specific collection of a reference database with clinical
semantics as S = {(Ii, yi)}Ni=1, where Ii is the image of the i-th polyp with
clinical categories yi ∈ {1, 2, . . . , C} and N is the database size. The task is
to infer the clinical label yi given an image Ii of a newly detected polyp. In
general, a supervised classifier uses the reference database to learn the mapping
fθ parameterized by θ such that yi = fθ(Ii). Although this method facilitates
an end-to-end diagnostic process, it falls short in terms of explainability.

Drawing inspiration from the K-Nearest Neighbors (KNN) algorithm, the
proposed EndoFinder framework builds on the hypothesis that polyps in close
proximity within the embedding space are likely to share similar clinical seman-
tics. EndoFinder identifies a set of ’digital twins’ from the reference database
given a test polyp image, leveraging the clinical semantics of the ’digital twins’
for transductive reasoning. Formally, the clinical label of a test image can be
determined by

yi = argmax
c∈{1,...,C}

∑
k∈N (Ii)

1{yk=c}. (1)

where N (Ii) denotes the set of indices corresponding to the K nearest neighbors
of the query image Ii. Here, 1{yk=c} is the indicator function whether the class
label yk of the kth nearest neighbors is equal to the class c.

2.2 Overview of the EndoFinder design

The core of EndoFinder is to construct a plausible embedding space for polyp
image retrieval, denoted as z = Eϕ(I), where Eϕ represents the feature extrac-
tor. Our approach involves learning a universal representation from extensive
polyp image datasets through self-supervised learning (SSL) (Figure 2) and sub-
sequently converting this representation into semantic hash codes to enable rapid
retrieval.

Universal polyp-aware image encoder: Drawing inspiration from the effec-
tiveness of masked autoencoder (MAE) and contrastive learning approaches, we
integrate these two SSL techniques to pre-train a ViT encoder.

On one hand, the image encoder is trained under the MAE framework to re-
construct masked image patches from the embedding features. In particular, we
introduce an adaptive masking strategy that leverages the available polyp seg-
mentation masks. This is realized by masking a larger proportion of background
patches compared to foreground patches inversely proportional to the ratio of
pixels within the segmentation mask (supplementary material), enabling the en-
coder to focus on the most informative regions of the image and to generate
so-called polyp-aware representation. The MAE reconstruction loss for a batch
of N images is the mean square error between the reconstructed image and the
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Fig. 2. Polyp-aware self-supervised representation learning and inference.

original image, focusing solely on the masked regions:

LMAE =
1

2N

2N∑
i=1

1

|Mi|
∑
k∈Mi

(Îi,k − Ii,k)
2. (2)

where Mi is a set of non-zero pixels in the masked image i, Îi,k and Ii,k refer to
the pixel k in the reconstructed and original image i, respectively. For a set of N
images, we generated 2N transformed images through repeated augmentations.

On the other hand, the class token (CLS) from the MAE encoder is subject
to a linear projection and L2 normalization, resulting in the embedding feature
zi ∈ Rd. At this stage, contrastive learning is applied, leveraging InfoNCE and
Entropy loss to evaluate the distance between augmented images of samples [12].
The positive pairs of matching images are P = {(i, i+N), (i+N, i)}i∈{1,...,N}.
We denote positive matches for image i as Pi = {j|(i, j) ∈ P}. The contrastive
InfoNCE loss maximizes the similarity between copies relative to the similarity of
non-copies. Entropy loss will push away the nearest neighbor who does not belong
to the positive pair. The temperature-adjusted cosine similarity si,j is computed
between the feature embeddings zi and zj . The loss LCON of contrastive learning
is the weighted sum of the infoNCE (first term) and entropy loss (second term),
with entropy loss weighted by hyper-parameter γ:

LCON = − 1

|P |
∑

(i,j)∈P

log
exp(si,j)∑
v ̸=i exp(si,v)

+γ

(
− 1

N

N∑
i=1

log(min
j /∈P̂i

||zi − zj ||)

)
(3)
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where P̂i = Pi ∪ {i}. The overall loss L is a weighted sum of the aforementioned
components, with MAE loss modulated by its weight parameter λ:

L = LCON + λLMAE . (4)

Semantic hashing for image retrieval: To accelerate the image retrieval
speed, we transform the features into hash codes through a hashing layer.

The quantization process is defined by:

z̄i,k =

{
1 if zi,k ≥ 0,

−1 if zi,k < 0.
(5)

This function assigns a binary code of 1 if the feature value zi,k for image i pixel
k is non-negative and −1 if zi,k is negative. Upon obtaining the binary codes, the
next step involves retrieving the images most similar to the query image. Using
binary codes for constructing a ball tree retrieval system significantly boosts
retrieval speed [36]. The retrieval process is based on the similarity of these
binary codes to those of the reference images. Once the most similar images
are retrieved, a voting mechanism is employed to determine the category of the
query image. This mechanism takes into account the categories of the k-nearest
reference images, thereby leveraging the collective information of the retrieved
set for accurate image categorization.

3 Experiments and Results

We first train the image encoder on Polyp-18k and then test the utility of
EndoFinder in polyp re-identification and optical polyp diagnosis on Polyp-
Twin and Polyp-Path, respectively. It is noted that polyps in the datasets do
not overlap. We implement two versions of EndoFinder using hashed features
(EndoFinder-Hash) or raw features (EndoFinder-Raw). The implementation de-
tails and hyper-parameter studies can be found in Supplementary Material.

3.1 Datasets

Polyp-18k: An in-house dataset of 17,969 polyp images with corresponding
polyp segmentation masks for the training of the image encoder of EndoFinder.
Polyp-Twin: A curated set of 200 images representing various angles of 100
distinct polyps (two images for each polyp) from colonoscopy video recordings.
Polyp-Path: A dataset of of 147 images with pathological classification [37].
57% are malignant and 43% are benign according.

3.2 Polyp Re-Identification

The first task is to retrieve the other paired image of the polyp given one polyp
from the Polyp-Twin. We compared our methods to ImageNet pre-trained fea-
ture extractors or SSL methods (MAE [11], ViT-SimCLR and CNN-SimCLR[12])



Image Retrieval for Polyp Diagnosis 7

Table 1. Comparison of Polyp Re-identification Performance.

uAP Acc@1 Recall@90% time(s) FPS

ImageNet
Features

Resnet50 0.365 0.495 0.128 0.485 2.06
VGG19 0.338 0.564 0.118 0.545 1.83

Densenet121 0.377 0.514 0.128 0.471 2.12
ViT-L16 0.243 0.386 0.059 0.451 2.21
SSCD 0.581 0.673 0.326 0.434 2.30

SSL on
Polyp-18k

MAE 0.470 0.554 0.227 0.453 2.22
ViT-SimCLR 0.591 0.623 0.415 0.454 2.18
CNN-SimCLR 0.672 0.693 0.495 0.433 2.30

EndoFinder-Raw 0.695 0.693 0.495 0.456 2.19
EndoFinder-Hash 0.693 0.693 0.524 0.009 108.57

pre-trained on Polyp-18k. As evidenced in Table 1, our model surpasses other
models across all metrics.

Furthermore, We evaluated the speed enhancement achieved using binary
codes for image retrieval on a dataset with over 12000 images, as shown in
Table 1. The use of binary codes to construct a ball tree retrieval system sig-
nificantly enhances retrieval speed. Fig. 3 illustrates a comparative analysis of
retrieval outcomes using different feature extractors.

Fig. 3. Examples of polyp re-identification results. Each row depicts a polyp, showing
the query image followed by the first retrieval results from EndoFinder, pre-trained
SSCD, VGG19 and Densenet121, respectively. Correct retrievals are bounded in red.

3.3 Optical Polyp Diagnosis

After validating the performance of our universal polyp-aware representation,
we evaluated the proposed image retrieval-based classification in a more clini-
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cally relevant task - determining the pathological malignancy on the Polyp-Path
dataset. The outcomes of EndoFinder are illustrated in Fig.4, demonstrating the
model’s effectiveness. We compared the performance of image retrieval-based
classification using different feature embeddings with supervised classifiers fine-
tuned on Polyp-Path with ImageNet pre-trained weights. The performance was
evaluated using 5-fold cross-validation, where 4 folds were used as the reference
database and the remaining fold was used for testing. The average results are
shown in Table 2.

Fig. 4. Examples of image-retrieval based classification by EndoFinder.

Table 2. Comparison of optical polyp diagnosis performance.

ACC SEN SPE F1

Supervised classifier

Resnet50 74.482 79.095 68.988 77.880
VGG19 76.550 77.954 76.259 78.848

Densenet121 75.864 79.212 71.082 79.062
ViT-L16 75.862 74.286 77.362 78.34

Retrieval using
ImageNet features

Resnet50 66.896 78.910 53.090 73.055
VGG19 68.275 71.203 66.320 71.719

Densenet121 73.793 80.815 64.796 77.562
ViT-L16 68.965 76.641 59.073 73.816

Retrival using
SSL features

MAE 66.896 70.182 65.437 70.939
ViT-SimCLR 67.586 70.753 62.588 71.593

EndoFinder-Raw 77.241 81.239 73.748 80.445
EndoFinder-Hash 73.793 81.916 63.922 78.213



Image Retrieval for Polyp Diagnosis 9

4 Discussion and Conclusion

By combining advanced SSL techniques, EndoFinder has achieved outstanding
performance in polyp image retrieval and pathological classification. Our exper-
imental findings highlight EndoFinder’s proficiency in identifying polyp-specific
features, as demonstrated by its superior accuracy and F1 scores compared to
traditional classification models. Image retrieval performance using EndoFinder
features outperforms that of features pre-trained solely through MAE or con-
trastive learning techniques. This superiority highlights the effectiveness of the
adaptive masking strategy and the synergistic benefits of combining SSL tech-
niques. It should be noted that the EndoFinder features were not fine-tuned on
the downstream classification task, demonstrating the power of universal repre-
sentation learned from large datasets in a self-supervised manner. The polyp-
aware semantic hash could serve as a unique identification (UID) to be explored
in future studies. By employing hashing-based retrieval methods, EndoFinder
ensures scalability to extensive reference datasets. Beyond merely enhancing op-
tical polyp diagnosis performance, EndoFinder has the potential to facilitate
various decision-making processes, such as determining the optimal approach
for polyp removal by searching and matching similar cases in historical records.

In conclusion, the EndoFinder framework establishes a universal represen-
tation for endoscopic images and delivers exceptional performance in real-time
polyp diagnosis, complete with explainability.
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15. Grill J B, Strub F, Altché F, et al. Bootstrap your own latent-a new approach
to self-supervised learning[J]. Advances in neural information processing systems,
2020, 33: 21271-21284.

16. Caron M, Misra I, Mairal J, et al. Unsupervised learning of visual features by con-
trasting cluster assignments[J]. Advances in neural information processing systems,
2020, 33: 9912-9924.

17. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in
neural information processing systems, 2017, 30.

18. Wu Z, Xiong Y, Yu S X, et al. Unsupervised feature learning via non-parametric
instance discrimination[C]//Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018: 3733-3742.

19. Hermans A, Beyer L, Leibe B. In defense of the triplet loss for person re-
identification[J]. arXiv preprint arXiv:1703.07737, 2017.
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