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Abstract. Survival prediction, utilizing pathological images and ge-
nomic profiles, is increasingly important in cancer analysis and prognosis.
Despite significant progress, precise survival analysis still faces two main
challenges: (1) The massive pixels contained in whole slide images (WSIs)
complicate the process of pathological images, making it difficult to gen-
erate an effective representation of the tumor microenvironment (TME).
(2) Existing multimodal methods often rely on alignment strategies to in-
tegrate complementary information, which may lead to information loss
due to the inherent heterogeneity between pathology and genes. In this
paper, we propose a Multimodal Cross-Task Interaction (MCTI) frame-
work to explore the intrinsic correlations between subtype classification
and survival analysis tasks. Specifically, to capture TME-related features
in WSIs, we leverage the subtype classification task to mine tumor re-
gions. Simultaneously, multi-head attention mechanisms are applied in
genomic feature extraction, adaptively performing genes grouping to ob-
tain task-related genomic embedding. With the joint representation of
pathological images and genomic data, we further introduce a Transport-
Guided Attention (TGA) module that uses optimal transport theory to
model the correlation between subtype classification and survival anal-
ysis tasks, effectively transferring potential information. Extensive ex-
periments demonstrate the superiority of our approaches, with MCTI
outperforming state-of-the-art frameworks on three public benchmarks.
https://github.com/jsh0792/MCTI.
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1 Introduction

Survival analysis is a crucial topic in clinical prognosis research, aiming to
predict the time elapsed from a known origin to events of interest, such as death
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and disease recurrence [1,10,18,20]. Accurate survival prediction is significant
for clinical management and decision-making, benefiting patients by enabling
healthcare professionals to tailor personalized treatment plans. Traditionally,
survival analysis is time-consuming and labor-intensive to make a predictive
diagnosis by pathologists [8,12]. With the development of deep learning, survival
analysis based on whole slide images (WSIs) and genomic profiles [4,6,15,27] has
shown massive potential for facilitating disease progression and treatment.

Given the gigapixel resolution of WSIs (e.g., 40, 000 × 40, 000 pixels), the
pathological image analysis is often formulated as a weakly supervised task us-
ing multiple instance learning (MIL). A WSI is developed as a bag contain-
ing multiple instances (patches) within the MIL framework. Existing MIL ap-
proaches [11,14,16] generally employ a two-stage architecture: initially using a
deep neural network to extract instance features and subsequently aggregat-
ing them through a pooling function to obtain a bag representation utilized in
downstream tasks. In the task of survival analysis, to better extract pathological
features, WSISA [28] adopts k-means clustering in the MIL framework to cap-
ture representative patches. DeepAttnMISL [26] further introduces an attention
pooling [11] that adaptively aggregates the selected instances for improving bag
representation. However, these methods could not effectively extract the tumor
microenvironment (TME) [24,21,2] contained in WSIs, as they ignore areas that
may have critical information, like tumor cells and lymphocyte infiltration [9],
which are highly relevant to survival analysis. On the other hand, the subtype
classification task requires the network to capture the tumor regions involved in
WSI. Consequently, introducing a subtype classification task could potentially
enrich the TME-related features, promoting survival analysis performance.

Genes expression corresponds to some morphological characteristics of patho-
logical TME [17,19], which is crucial for improving survival analysis. Most re-
lated works focus on solving the alignment problem among different modali-
ties [3,4,5,15]. Pathomic Fusion [3] develops a tensor fusion module to fuse patho-
logical and genomic features. MCAT [4] uses a multimodal co-attention module
to identify instances from pathological images using genomic features as queries.
MoCAT [5] builds interactions between pathology and genomics through optimal
transport, aligning genomic representations to pathological features. However,
the alignment process inevitably loses modality-specific information and seman-
tic differences between pathological images and genomic profiles. Unlike these
methods, this paper explores the task correlation between subtype classification
and survival analysis, optimizing the joint representation of genes and pathology
through task interaction, aiming to enhance the effectiveness of survival analysis.

This paper proposes a Multimodal Cross-Task Interaction (MCTI) frame-
work that integrates the subtype classification task for improving survival anal-
ysis. Specifically, MCTI leverages the tumor localization ability of attention-
based multiple instance learning framework in the context of subtype classifi-
cation task, effectively enriching TME-related features. Meanwhile, multi-head
attention mechanisms are used to process genes for adaptively grouping and
embedding. With the joint representation of pathological image and genes, we
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Fig. 1: Illustration of Multimodal Cross-Task Interaction (MCTI) framework.
“Mat. Mul.” denotes matrix multiplication, “Attn.” is attention, “Conv.” is a
convolutional layer, and “Concat.” refers to concatenation operation.

perform a Transport-Guided Attention (TGA) based encoder-decoder for fea-
ture reconstruction, where TGA considers the correlation between both tasks,
effectively achieving the information interaction for benefiting survival analysis.
In short, the contributions of this paper are threefold. (1) We propose a Mul-
timodal Cross-Task Interaction (MCTI) framework that leverages pathological
images and genomic data for survival analysis. The framework ingeniously uti-
lizes the subtype classification task to mine valuable disease-positive instances
for the survival analysis task, significantly enhancing the model’s perception
of the tumor microenvironment. (2) We introduce a novel Transport-Guided
Attention (TGA) module based on optimal transport theory, highlighting the
correlation between subtype classification and survival analysis tasks, effectively
performing information interaction for both tasks and optimizing the unified fea-
ture representation of pathology and genes. (3) Extensive experiments validate
the effectiveness of our approaches, and MCTI outperforms the state-of-the-art
frameworks on three public benchmarks. Codes will be publicly available.

2 Methodology

2.1 Preliminary

Survival Analysis. Let D = {D1, D2, ..., DN} represent the clinical data of N
patients. Each patient data can be represented by a Di = (Pi, Gi, ci, ti, Yi), where
Pi is the set of WSIs, Gi is the set of genomic profiles, ci ∈ {0, 1} is the right
uncensorship status, ti is overall survival time, and Yi denotes the subtype of
cancer. We aim to construct a survival prediction model to estimate fhazard(T =
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Fig. 2: Overall structure diagram of WSI bag construction in MCTI.

t|T ≥ t,X), where T is a random variable and t represents the time point of the
occurrence of the death event. And the cumulative value of the risk function is
output as the risk score: fsurv(T ≥ t,X) =

∏t
u=1(1− fhazard(T = t|T ≥ t,X)).

Subtype Classification. The subtype classification task is often formulated
as a MIL problem, where the patches extracted from WSI are considered as
instances of the bag, and only the slide-level label Y can be obtained. For a bag
B containing n patches, it can be formulated as B = {(x1, y1) , ..., (xn, yn)} ,
where xi represents the ith patch, and yi represents the corresponding label
for the patch. Mainstream MIL frameworks [11,14] generally adopt a suitable
transformation f and a permutation-invariant transformation g to obtain the
predicted label Ŷ of B, given by Ŷ = g (f (x1) , ...f (xn)).

2.2 Overall Framework

The overall framework of our proposed method, Multimodal Cross-Task In-
teraction (MCTI), is shown in Fig. 1. Firstly, we extract pathological features us-
ing a subtype classification task and obtain genomic features by adaptive group-
ing. Next, the encoder-decoder structure based on Transport-Guided Attention
reconstructs the multimodal embedding. Finally, we use the embedding to pre-
dict the survival hazard score. The details are described in the following parts.

2.3 Pathological and Genomic Feature Extraction

WSI Bag Construction. We use the DSMIL [14] framework as the backbone,
where the instance branch assigns an attention score for each instance, reflect-
ing the instance’s importance to the subtype classification. We select the top-k
instances based on the scores to form a new bag Bn, as shown in Fig. 2. To
supervise the selection of patches related to the tumor microenvironment, we
use the cross-entropy H(y, ŷ) = −

∑
i yi · log(ŷi) as loss function for bag clas-

sification and instance classification: LDSMIL = H(Yi, Ŷbag) + H(yi, ŷinstance),
where ŷinstance is the prediction type of the critical instance, yi is equivalent to
Yi. Then, we can locate relevant regions of the tumor microenvironment of WSI
by the subtype classification task.
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Gene Bag Construction. Inspired by recent work [4,22,25], we aim for our
model to adaptively group and extract gene representations. Specifically, we
employ Multi-head Self-attention (MSA) [23] functions in parallel to generate
feature representation, which allow the model to consider information from dif-
ferent representation subspaces simultaneously. Then, they are concatenated and
once again projected. We obtain the new presentation of genes B ∈ R1×d. Here,
we replicate the gene embedding k times, resulting in a representation B ∈ Rk×d

with the same dimensions as the pathological features, where k critical patches
have been selected.

2.4 Multi-Task Encoder-Decoder for Feature Reconstruction

In the above steps, we derive the representation of the WSI B (P ) = {p1, ..., pk}
abbreviated as P and genes B (G) = {g1, ..., gk} abbreviated as G. Then, we con-
catenate B and G to obtain a multimodal representation X ∈ R2k×d. Afterward,
we employ a Transport-Guided Attention (TGA) based encoder-decoder for fea-
ture reconstruction. It effectively facilitates information interaction to capture
task-complementary information and enhance feature representation related to
survival analysis.

Transport-Guide Attention (TGA). TGA utilizes optimal transport (OT)
to explore the effective knowledge transfer between tasks, yielding cross-task rep-
resentations. The representations collect complementary information that may
not be available within a single task. TGA also employs a self-attention struc-
ture to preserve intra-task information within the source distribution, ensuring
minimal information loss when it flows from the objective to the source. The
computation of the TGA module can be formulated as follows:

TGAB (S,O) =
(
QTS

) (
KTS

)
FT
n

(
V TS

)
, (1)

where S is the source data, O is the objective data. Fn is calculated from
W (S,O) = min ⟨Fn, Cn⟩F , where < · >F refers to the Frobenius dot product.
The best matching flow Fn based on local pairwise similarity and cost matrix
Cn measures the distance of embeddings using optimal transport theory [5,7].

TGA-based Encoder-Decoder Blocks. We hope the encoder can learn
the shared inter-task features and the decoder can learn the specific intra-task
features layer by layer rather than transferring knowledge between two tasks
simultaneously. Thus, we firstly define three learnable feature tokens xcls ∈ Rk×d,
xsurv ∈ Rk×d, and xshare ∈ Rk×d to generate the inputs of encoder:

E0
share = concat(X,xshare), E

0
cls = concat(X,xcls), E

0
surv = concat(X,xsurv), (2)

where E0
share is inter-task embedding, E0

cls is the embedding of subtype classifi-
cation task and E0

surv is the embedding of survival analysis.
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The computation of the encoder block is formulated as follows:

Ei+1
cls = TGA

(
Ei

cls, E
i
share

)
, Ei+1

surv = TGA
(
Ei

surv, E
i
share

)
, (3)

Ei+1
share = conv

(
concat

(
Ei+1

cls , Ei+1
surv

))
. (4)

The computation of the decoder block is formulated as follows:

Di+1
cls = TGA((Di

share+En−i+1
share ), Di

cls), D
i+1
surv = TGA((Di

share+En−i+1
share ), Di

surv), (5)

Di+1
share = conv

(
concat

(
Di+1

cls , Di+1
surv

))
. (6)

During the decoding process, a skip connection is adopted, and the output of
the intermediate step of the encoder is connected to the decoder as part of the
input. Our model stacks four layers in the encoder-decoder to obtain more task
complementary information.

2.5 Loss Function

MCTI uses negative log-likelihood survival loss [9] as the survival analysis loss
Lsurv and the cross-entropy loss as the loss function of the subtype classification
Lcls. Combining with LDSMIL (refer to Section 2.3), the total loss Ltotal can be
formulated as:

Ltotal = Lcls + LDSMIL + αLsurv, (7)

where α is a hyper-parameter for balancing the influence of the loss function,
the value of α is 1.

3 Experiment

3.1 Datasets & Experimental Settings & Evaluation Metrics

We conduct extensive experiments on four public datasets from The Can-
cer Genome Atlas (TCGA). Specifically, we used Breast Invasive Carcinoma
(BRCA), Esophageal Carcinoma (ESCA), Kidney Renal Papillary Cell Carci-
noma (KIRP), and Non-small Cell Lung Cancer (NSCLC). We conduct 4-fold
cross-validation for evaluation and then randomly split the data as the ratio
of training: validation: testing = 60: 15: 25. Our MCTI is implemented in Py-
Torch 1.12.1 using an NVIDIA RTX 3090 GPU. During training, we use Adam
optimization with a learning rate of 0.00005. The number of critical instances
selected k = 256. Following CLAM [16], we segment tissue regions for each WSI
and crop 256 × 256 patches over 20× magnification, then use ImageNet pre-
trained ResNet-50 to extract the embedding (d = 1024) for each patch. We use
the concordance index (C-Index) to evaluate the performance of survival analysis
models. Kaplan-Meier analysis is utilized to measure the statistical significance
between low risk group and high risk group.
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Fig. 3: Kaplan-Meier Analysis on four cancer datasets according to predicted risk
scores. P-value < 0.05 means significant statistical difference between low-risk
(blue) and high-risk (red).

Table 1: C-Index (mean ± std) performance over four cancer datasets. The best
results are shown in bold, and the second best ones are underlined.
Model TCGA-BRCA TCGA-ESCA TCGA-NSCLC TCGA-KICA
SNN 0.584± 0.035 0.540± 0.056 0.542± 0.026 0.651± 0.011

AvgPool 0.566± 0.083 0.567± 0.024 0.568± 0.028 0.658± 0.049
AttnMIL [11] 0.556± 0.100 0.583± 0.036 0.571± 0.030 0.657± 0.073
CLAM-SB [16] 0.489± 0.083 0.551± 0.051 0.552± 0.037 0.692± 0.058
CLAM-MB [16] 0.563± 0.066 0.591± 0.041 0.581± 0.025 0.695± 0.040
DSMIL [14] 0.543± 0.095 0.594± 0.007 0.581± 0.027 0.645± 0.033

MCAT [4] 0.544± 0.034 0.553± 0.085 0.638± 0.013 0.693± 0.010
CMTA [27] 0.578± 0.029 0.565± 0.033 0.655 ± 0.028 0.698± 0.015
PORPOISE [6] 0.587± 0.043 0.527± 0.034 0.542± 0.013 0.677± 0.040
M3IF [15] 0.579± 0.047 0.557± 0.031 0.502± 0.027 0.664± 0.018

Ours 0.656 ± 0.018 0.621 ± 0.044 0.639± 0.028 0.723 ± 0.046

3.2 Comparison with State-of-the-Art Methods

Table 1 shows the quantitative results of unimodal and multimodal meth-
ods. For unimodal methods, we adopt SNN [13] as the genomic features extrac-
tor for survival analysis. Additionally, AvgPool, ABMIL [11], CLAM [16], and
DSMIL [14] use pathological images for survival analysis. Table 1 shows that
their performances are worse than multimodal methods.

We also compare our method with multimodal survival analysis frameworks,
including Porpoise [6], MCAT [4], M3IF [15], CMAT [27].

Unlike them, exploring modality alignment to transfer potential complemen-
tary information, our method introduces the subtype classification task to as-
sist survival analysis. Our model outperforms other state-of-the-art multimodal
methods by a large margin in the BRCA, ESCA, and KIRP datasets. Especially
on the BRCA dataset, our model surpasses the second best by 7.7%. We also
visualize the Kaplan-Meier survival curves in Fig. 3 to demonstrate a statistical
distinction in patient stratification performance.
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Fig. 4: Visualization of attention map. “cls.” is the subtype classification task.

Table 2: Ablation study assessing C-Index (mean ± std) performance. The best
results are shown in bold. “recon.” refers to reconstruction.
Settings TCGA-BRCA TCGA-ESCA TCGA-KICA TCGA-NSCLC
MCTI w/o WSI Recon. 0.489± 0.083 0.551± 0.051 0.692± 0.058 0.552± 0.037
MCTI w/o Genes Group. 0.563± 0.066 0.591± 0.041 0.695± 0.040 0.581± 0.025
MCTI w/o TGA 0.545± 0.021 0.592± 0.093 0.582± 0.148 0.537± 0.020
MCTI 0.656 ± 0.018 0.621 ± 0.044 0.723 ± 0.046 0.639 ± 0.028

3.3 Ablation Studies

In this section, we perform ablation experiments to validate the impact of
our modules. Quantitative results are presented in Table 2.

Effectiveness of Critical Patch Selection. Table 2 shows that when
patches are randomly selected, C-Index drops by 16.7%, 7.0%, 3.1%, and 8.7% in
the four datasets. In contrast, choosing critical patches based on subtype classi-
fication aims to explore the tumor microenvironment and provide a better WSI
bag representation for survival analysis tasks.

Effectiveness of Multi-Head Attention on Genomic Embedding. As
shown in Table 2, the BRCA dataset is significantly influenced by multi-head
attention. Furthermore, the figure indicates that adaptive genes grouping and
feature extraction are beneficial for survival analysis.

Effectiveness of Subtype Classification in TGA. When we remove the
loss function of the arbitrary task in TGA, for the sake of fairness of the model,
we also replace the branch of the classification task with survival analysis, i.e.,
Ltotal = Lsurv + αLsurv. From Table 2, we can find that the performance de-
creases by 11.1%, 2.9%, 14.1%, and 10.2% on the four datasets respectively. Fig.
4 shows the attention map generated by DSMIL, from which we can observe
that our model excels in capturing tumor-related regions.

4 Conclusion

In this study, we propose a novel Multimodal Cross-Task Interaction (MCTI)
framework that leverages subtype classification as an auxiliary task to enhance
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survival analysis. Based on attention-based multiple instance learning, MCTI
performs subtype classification to precisely identify tumor regions within WSIs,
enhancing the representation of TME-related features. Furthermore, a Transport-
Guided Attention (TGA) module is designed to consider the correlation between
tasks and effectively transfer the knowledge from the subtype classification task
to survival analysis. Our experiments demonstrate the effectiveness of MCTI,
outperforming state-of-the-art frameworks across three public benchmarks. This
study provides fresh insight into survival analysis. Future work would focus on
explaining the relations between subtype classification and survival analysis and
validating MCTI’s performance on multi-center datasets.
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