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Abstract. With the rapid development of multimodal large language
models (MLLMSs), especially their capabilities in visual chat through re-
fer and ground functionalities, their significance is increasingly recog-
nized. However, the biomedical field currently exhibits a substantial gap
in this area, primarily due to the absence of a dedicated refer and ground
dataset for biomedical images. To address this challenge, we devised the
Med-GRIT-270k dataset. It comprises 270k question-and-answer pairs
and spans eight distinct medical imaging modalities. Most importantly, it
is the first dedicated to the biomedical domain and integrating refer and
ground conversations. The key idea is to sample large-scale biomedical
image-mask pairs from medical segmentation datasets and generate in-
struction datasets from text using chatGPT. Additionally, we introduce a
Refer-and-GrounD Multimodal Large Language Model for Biomedicine
(BiRD) by using this dataset and multi-task instruction learning. Exten-
sive experiments have corroborated the efficacy of the Med-GRIT-270k
dataset and the multi-modal, fine-grained interactive capabilities of the
BiRD model. This holds significant reference value for the exploration
and development of intelligent biomedical assistants. The repository is
at https://github.com/ShawnHuang497/BiRD

Keywords: Referring and grounding - Instruction dataset - Biomedicine.

1 Introduction

Multimodal large language models (MLLMs) have become a popular area of re-
search, with numerous applications in the field of visual languages, such as, Vi-
sual Question Answering (VQA), open vocabulary detection, and so on. Nonethe-
less, the unique challenges presented by the realm of biomedicine, which starkly
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4 Can you describe the content within the [region]? ]
. This region contains the lumbar vertebra, which is part of the spine anﬁ’provmes
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L ¢ soft tissue component associated with the lesion.

@4 What can you interpret from the overall image? ]

(" The T image in the coronal plane displays the head and neck, thorax, aﬂ abdomen
_ -, regions. It shows the right lung, heart, and left lung. The image provides detailed
H=x cross-sectional information for evaluation of these structures and any potential
.i: g abnormalities or pathologies.
7
:5: ( From the overall image, it appears that the patient's condition has improved. The
::>. follow-up CT scan, taken 6 months later, shows significant resolution of the
- previously observed issue. This suggests that the treatment provided to the patient

has been effective in addressing the problem.

BiRD @ LLaVa-Med (&) User ©) worse @ beer [ ] GroundTrum

Fig.1: BiRD empowers multimodal large language models in biomedicine with
sophisticated referring and grounding capabilities. For more equitable compari-
son, we append spatial information to each LLaVa-med test, such as "The image
size is [w, h], and the origin of the coordinate system is located in the upper left
corner of the image.", where w and h denote width and height, respectively.

contrasts with the natural world, often render conventional visual assistants in-
ept. They may either refrain from responding to biomedical queries or, worse,
provide inaccurate responses or entirely fabricated information [IT].

Despite existing research within the realm of biomedical MLLMs, current
studies have predominantly focused on image description and VQA, leaving a
notable gap in capabilities concerning referring and grounding (shown in Fig. [1).
The act of referring demands a model’s accurate semantic comprehension of spec-
ified regions, while grounding necessitates the localization of regions based on
semantic descriptions provided [27]. These fine-grained multimodal capabilities
are essential for both the interaction process between intelligent biomedical assis-
tants and patients and for biomedical education. This capability not only makes
the information exchange process more intuitive but also significantly enhances
the accuracy and efficiency of information exchange. A key factor hindering the
development of this capability in the field of biomedicine is the lack of multi-
modal fine-grained interactive datasets.

To address these challenges, we develop the BioMedical Ground-and-Refer
Instruction-Tuning (Med-GRIT-270k) dataset by leveraging the medical seg-
mentation dataset (SA-Med2D-20M [26]). Then a biomedical refer-and-ground
multimodal large language model was explored with the Med-GRIT-270k and
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multi-task instruction learning method. The paper principally contributes the
following:

— Med-GRIT-270k Dataset. Large-scale biomedical image-mask pairs are trans-
formed into multi-modal conversations by leveraging chatGPT [19] in a novel
process. It is the first dataset in biomedicine to integrate referring, ground-
ing, and conversations.

— The first Biomedical Refer-and-grounD Multimodal Large Language Model
(BiRD). It is fine-tuned by multi-task instruction learning for the biomedical
domain with self-generated data. This validates the effectiveness of multi-
task instruction tuning and highlights best practices for adapting the MLLMs
to the specialized domain.

— To advance biomedical multi-modal learning research, we will release the
Med-GRIT-270k dataset and a comprehensive codebase for community use.

2 Related Work

Biomedical Multi-modal Large Language Models. Amidst the rapid devel-
opment of Large Language Models (LLMs) and the success of instruction-tuned
LLMs within the general domain [25IT7I28I30I5I27], researchers in the biomed-
ical field have been fervently exploring the expansion of these models’ capabil-
ities. Recent studies have increasingly concentrated on the domain of MLLMs,
with notable endeavors within the biomedical sector including BioMedGPT [I§],
RadFM [24], LLaVa-Med [12], and so on [29/T6I8I23[7I2T]. These methodologies
have significantly propelled the development of MLLMs in the biomedical realm.
For instance, LLaVa-Med [12], utilizing pre-trained LLMs for visual instruction
tuning, has established a unique, end-to-end multi-modal biomedical chatbot
capable of processing image inputs. RadFM [24] is a MLLM supporting 2D/3D
radiographic imaging input for the medical domain. However, due to various
challenges, biomedical MLLMs capable of supporting fine-grained interactions
have yet to emerge.

MLLMs for Referring and Grounding. In natural images, the large-
scale public datasets have greatly supported the exploration into the sophisti-
cated understanding abilities of multimodal large language models (MLLMSs),
such as Gpt4ROI [30], Ferret [27], QWen-VL [3], and so on. Although some
work [I4/9] has already begun to investigate grounding in biomedicine, it can
only be applied to small models, as the amount of data is limited and there are
only a few modalities. The paramount factor underlying the success of these ini-
tiatives is their access to pertinent, large-scale datasets. For instance, QWen-VL
uses around 80M data for referring and grounding. However, the multi-modal
fine-grained interactive dataset in biomedical is virtually nonexistent.
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Biomedical Refer-and-Ground Instructon-Tuning Example

Meta Information:
Image Modality: MRI.
Scanned Region: Head and Neck.
Image Orientation: Vertical.
Objects:
Object 0: non enhancing tumor at [0.562, 0.654, 0.625, 0.737].
Object 1: edema at [0.454, 0.554, 0.700, 0.800].
Object 2: enhancing tumor at [0.512, 0.604, 0.679, 0.758].
Image Caption:
It is a MRI scan of the head and neck region. It is displayed in a vertical orientation. The
structures observed in the image include edema, a non-enhancing tumor, and an enhancing tumor.

Conversations:

User: Can you tell me where the enhancing tumor is located in the image?

Assistant. The <ref>enhancing tumor</ref> is located at the coordinates <box>(512,604),
(679,758)</box>.

User: What is the object at the coordinates <box>(454,554),(700,800)</box>?
Assistant: Edema.

User: Can you tell me more about the structure at <box>(562, 654),(625,737)</box>?
Assistant: The structure at the given coordinates is a non enhancing tumor. It may lack active
vascular supply.

User: Can you provide a general interpretation of this image?

Assistant: This image, captured through MRI in a vertical orientation, showcases the head and
neck region. It reveals the presence of edema, a non-enhancing tumor, and an enhancing tumor

\_ Within the scanned area. )

Fig. 2: An instance of our generated instruction-following data. Top: the meta in-
formation is created according to rules in medical segmentation datasets, and the
image caption was generated from chatGPT. Bottom: the instruction following
data generated by chatGPT.

3 Med-GRIT-270k: Biomedical Ground-and-Refer
Instruction-tuning Dataset

We've created the first biomedical refer-and-ground instruction-tuning dataset
to address the lack of such resources. It was generated through the collabora-
tive efforts of humans and Artificial Intelligence (AI), derived from large-scale
biomedical image segmentation datasets. The generation process can be divided
into three steps: (i) Manually generating instance-level meta information for
each image based on its mask. (ii) Employing an AT assistant to generate global
information for the images. (iii) Utilizing the AI assistant to craft fine-grained
conversations based on the meta information and global image information ob-
tained in the previous steps.

Generating Instance-level Meta Information. We first sampled biomed-
ical image-mask pairs from the SA-Med2D-20M [26]. Ultimately, approximately
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60K images were sampled from this dataset, considering the diversity of modal-
ity and redundancy. For instance, the original dataset includes a plethora of
2D slices from 3D data, leading to excessive data similarity. Subsequently, we
calculated the coordinates of each instance based on the instance-level masks.
Specifically, spatial locations are delineated via the textual representation in the
format [Xtoplefta thoplefh Xbottomright; }/bottomright]) and normalize the coordi-
nates to fall within the range [0,1]. Finally, we enrich the images with additional
details to compile the meta information, which includes modality, scanned re-
gion, orientation, and object coordinates.

Generating Image Captions. We utilize meticulously designed prompts
along with the meta information provided to ChatGPT [19], thereby acquiring
the global information for each image.

Biomedical Instruction-Tuning Data. Spatial understanding is mani-
fested through various task formats. This primarily encompasses two distinct
types and their corresponding task names: (i) Region-in and Text-out: Refer-
ring Object Classification (ROC), Referring Captioning (RC), (ii) Text-in and
Region-out: Visual Grounding (VG), and (iii) Text-in and Text-out: Medical
Image Analysis (MIA). To reduce ambiguity and enhance the model’s capability
for fine-grained visual comprehension, some essential strategies are adopted. The
special tokens (<ref> and < /ref>) are introduced, marking the content referred
to by the bounding box. This aptly associates bounding boxes with their corre-
sponding descriptive words or sentences. Subsequently, we instructed ChatGPT
to design a question and answer for each task.

Finally, We mapped the coordinates within the range [0, 1000] and refor-
matted them as (Xtoplefta Y;opleft); (Xbottomrighta Hottamright)~ To differentiate
between detection strings and regular text strings, two special tokens (<box>
and </box>) are appended at the start and end of the bounding box string,
respectively. Fig. [2] shows an example of our instruction-following data.

4 Multi-task Instruction Learning

We aim to imbue MLLMs with grounding and referring capacities via multi-task
learning, simultaneously ensuring the retention of the MLLM’s essential conver-
sational proficiency. This section will henceforth elucidate from two perspectives:
the architecture of the model and multi-task instruction training.

4.1 Model Architecture

We utilize Qwen-VL [3], a comprehensive multimodal conversational model, as
the foundational general-domain language model. Specifically, the visual en-
coder employs the Vision Transformer (ViT) [6] architecture, initialized with
pre-trained weights from OpenATl’s CLIP ViT-BigG [10]. The vision-language
adapter utilizes cross-attention with a trainable query. The large language model
incorporates the pre-trained Qwen-7B [2].
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Fig.3: Overreview. Left: the training set (Top) and test set (Bottom) distri-
bution of conversation turns in Med-GRIT-270k we collected. Right: the archi-
tecture of the Biomedical refer-and-ground multimodal large language model
(BiRD), which is based on Qwen-VL [3]. We have developed it from the 240k
data and evaluated it on 30k data.

4.2 Multi-task Instruction Training

Considering that the base model already possesses the capability to refer or
ground within natural images, we employ only one stage to finetune it based
on the pre-trained base model on the Med-GRIT-240k dataset. As illustrated
in Fig. , We solely fine-tune the cross-attention and LLM parameters, while
the visual encoder remains frozen. The input images are processed through the
ViT-BigG [10] and vision-language adapter, yielding fixed-length sequences of
visual features. We then append the markers (<img> and < /img>) to the start
and end of the image feature sequence, respectively, to denote the beginning and
end of visual content. We fine-tuned the model using a dataset comprising 60k
images and a total of 240k dialogue turns. The global training batch size is 128.
The learning rate is 2e — 5 and the scheduler is cosine. The multi-task instruction
training just took 30 hours on 4 x A100(40G) GPUs.

5 Experiments

In this section, we execute a thorough evaluation across diverse multimodal tasks
to holistically gauge our models’ proficiency in visual comprehension.
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Table 1: Comparison with LLaVa-Med [12] and study on the multimodal dataset
scales.

Model | Test dataset |VG (Recall@0.51) ROC (Recallt) RC (SPICE 1) MIA (mBMR1)|Averaget

LLaVa-Med [12]  [Med-GRIT-Test30k 0 2.75 8.18 11.20 5.53
BiRD-Med-GRIT-20k |Med-GRIT-Test30k 38.59 47.94 29.02 27.22 35.69
BiRD-Med-GRIT-40k [Med-GRIT-Test30k 46.30 51.84 50.32 30.14 44.65
BiRD-Med-GRIT-80k [Med-GRIT-Test30k 52.87 52.02 52.84 44.83 50.64
BiRD-Med-GRIT-270k|Med-GRIT-Test30k 53.92 65.33 55.23 52.17 56.66

LLaVa-Med [12] LLaVa-Med-qa0.2k - - - 20.04
BiRD-Med-GRIT-270k| LLaVa-Med-qa0.2k - - - 10.55
Table 2: The capabilities of various biomed- e ; - N
. " e Where is the kidney il
ical MLLMs. Note that the "Modality" de- (@) 4located in this image?) 0
notes image modality. <ref>Kidney</ref> is

located at the

coordinates
MIA ROC RC VG Modality || <box>(281,437),(399,52

5)</box>.
LL Med [17] ¢V X X The kidney is not
aVa-Me [ ] o L present in the image.

RadFM [24]

4
Med-palm m [22] ¢/ Fig.4: The example of object
4

hallucination in BiRD.

N X X %

X X 6
X X 6
BiRD v v 8

Evaluation dataset. We randomly selected approximately 12% of the im-
ages and dialogues from the constructed Med-GRIT-270k dataset to serve as
the test set. Given that a single 3D dataset contains multiple data slices, we
extracted cases in their entirety to prevent leakage of test set data into the
training set. This ensures that different slices from the same 3D dataset do not
concurrently appear in both the training and test sets, thereby guaranteeing the
reliability of the test results.

Evaluation metrics. The evaluation metrics for the four tasks are Re-
call@0.5, Recall, Spice [1], and mBMR, respectively. Recall@0.5 denotes a pre-
diction as correct only when the intersection over union (IoU) between the pre-
dicted bounding box and the ground truth exceeds 0.5. The mBMR utilized
for assessing the MIA task is the mean value of BLEU@4 [20], METEOR [4],
and ROUGE-L [15], offering a more comprehensive evaluation of the prediction
quality than a solitary metric.

Comparison. As shown in Table 2] we are the pioneers in developing a
medical MLLM with referring and grounding capabilities, and existing MLLMs
(such as Qwen-VL [3], GPT-4 [19], MiniGPT-v2 [5], etc.) have not seen medical
referring and grounding data. So we will not compare them on evaluation metrics,
as it would be profoundly unfair.

As illustrated in Table [, we present the quantitative test outcomes for
LLaVa-Med [12] and the impact of the data scale on these results. Between rows 3
and 6, we observe the performance of the BiRD-Med-GRIT model across varying
data scales. With the expansion of training data, all metrics exhibit significant
enhancements, with the average rising from 35.69 to 56.66. This underscores
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Table 3: The performance of the BiRD model across various tasks and modalities
on the Med-GRIT-270k test dataset.
‘ Metric ‘ CT MR X-ray PET Endoscopy Dermoscopy Fundus Ultrasound‘Average

VG  |Recall@0.51(44.47 29.26 41.73 56.46 53.60 75.63 84.15 46.04 53.92
ROC Recallt |34.76 61.79 53.74 - 60.40 96.61 - 84.65 65.33
RC Spicet |41.88 51.69 37.39 47.95 54.07 77.44 48.73 82.65 55.23
MIA mBMR?T |47.01 49.35 37.17 57.15 39.91 72.13 48.87 65.78 52.17
Average - ‘43.03 48.02 42.51 53.85 51.99 80.45 60.58 69.78 -

the efficacy of augmenting dataset size in bolstering the model’s proficiency on
multimodal datasets. Notably, at the 240k dataset level, the model achieved the
highest scores across all metrics, showcasing optimal overall performance.

From the first and sixth rows of Table[l] it is evident that the LLaVa-Med [12]
model demonstrates subpar performance on the Med-GRIT-Test30k dataset,
particularly in terms of no efficacy in region-level visual content localization (with
the Recall@0.5 of 0). Simultaneously, we evaluated our model on the LLaVa-Med
qa-0.2k test set as well. As indicated in the last two rows of Table [I] due to not
being trained on the LLaVa-Med [12] dataset, our performance metrics on its test
set were marginally lower than its own. However, on similar MIA tasks within our
test set, LLaVa-Med [12](with an mBMR of 11.20), significantly underperformed
in comparison to our model (with an mBMR of 52.17).

Main Results. As shown in Table[3] we display the performance of the BiIRD
model across four distinct tasks in eight different medical imaging modalities.
The ROC task tests the MLLM’s understanding of text related to specific image
areas and their visual details. The PET and Fundus, which focus on only one
category, are not trained or evaluated. We find the recall of ROC mainly depends
on the variety and distinctiveness of objects and features across image modalities.
The RC task tests the model’s ability to recognize image regions and describe
them in words. The model does well with Ultrasound and Dermoscopy images
but struggles with the more diverse CT images, where performance lags. The
VG task tests how well the model matches text descriptions to image areas. MR
modality performed the worst, likely because it mostly features tumor tissues,
with far fewer anatomical structures. This issue is also seen in ultrasound images.
The MIA task checks the model’s understanding of medical images. The 4th
row in Table [3] shows the model has some level of analysis and understanding
across almost all modalities.

Across the four evaluated tasks, it is apparent that the Dermoscopy modality
consistently exhibits the highest performance metrics. This can be attributed
to the distinct visual features, a reduced number of object categories, and the
substantial proportion of the image occupied by the object regions, collectively
simplifying the task for this particular modality.

Object Hallucination. As Fig. [4]shows, we have also observed instances of
object hallucination in BiRD. This phenomenon is common and has also been
observed in other MLLMs [I3]. We believe this is attributed to the fact that
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the model’s visual encoder is frozen, and its initialized parameters have scarcely
encountered medical imaging, resulting in a lack of comprehensive understanding
of specific domains or topics in feature extraction. In a word, this phenomenon
should receive increased attention in future research endeavors.

6 Conclusion

In this paper, to develop a single MLLM assistant capable of handling multiple
vision-language tasks, we propose a Med-GRIT-270k dataset. By leveraging the
dataset, we introduce the BiRD model, a Biomedical Refer-and-GrounD Multi-
modal Large Language Model. We verified BiRD on a diverse 30k question-and-
answer test set, encompassing multimodal and multitask scenarios. The BiRD
showcases a highly promising direction for developing intelligent biomedical as-
sistants. To our knowledge, Med-GRIT-270k and BiRD are respectively the first
refer-and-ground dataset and fine-grained interactive MLLM in the realm of
biomedicine. We will release both the dataset and model to foster the develop-
ment of intelligent biomedical assistants.

Limitations. Although this work developed a novel multimodal dataset in
biomedicine, during the data construction process, most of the raw datasets
only annotated certain organs or diseases for a sample. This makes it difficult
to construct highly correlated negative samples. This issue will be a focus in the
subsequent data construction work.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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