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Abstract. The black-box nature of deep learning models has raised con-
cerns about their interpretability for successful deployment in real-world
clinical applications. To address the concerns, eXplainable Artificial In-
telligence (XAI) aims to provide clear and understandable explanations
of the decision-making process. In the medical domain, concepts such
as attributes of lesions or abnormalities serve as key evidence for de-
riving diagnostic results. Existing concept-based models mainly depend
on concepts that appear independently and require fine-grained concept
annotations such as bounding boxes. However, a medical image usually
contains multiple concepts, and the fine-grained concept annotations are
difficult to acquire. In this paper, we aim to interpret representations in
deep neural networks by aligning the axes of the latent space with known
concepts of interest. We propose a novel Concept-Attention Whitening
(CAW) framework for interpretable skin lesion diagnosis. CAW is com-
prised of a disease diagnosis branch and a concept alignment branch.
In the former branch, we train a convolutional neural network (CNN)
with an inserted CAW layer to perform skin lesion diagnosis. The CAW
layer decorrelates features and aligns image features to conceptual mean-
ings via an orthogonal matrix. In the latter branch, the orthogonal ma-
trix is calculated under the guidance of the concept attention mask. We
particularly introduce a weakly-supervised concept mask generator that
only leverages coarse concept labels for filtering local regions that are
relevant to certain concepts, improving the optimization of the orthog-
onal matrix. Extensive experiments on two public skin lesion diagnosis
datasets demonstrated that CAW not only enhanced interpretability but
also maintained a state-of-the-art diagnostic performance.
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1 Introduction

Deep learning has achieved significant advancements in medical image analysis.
However, the black-box nature of deep learning greatly hinders its practical de-
ployment and application [14, 7]. The networks usually output predictions with-
out providing any explanation, resulting in a lack of interpretability. Therefore,
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there is an urgent need to develop eXplainable AI (XAI) techniques that can
enhance the transparency and understandability of the decision-making process.

Recently, there has been an increasing consensus that XAI should incorpo-
rate explanations based on concepts [20]. In the medical domain, concepts can
be defined as high-level attributes of lesions or abnormalities, serving as evidence
for deriving diagnostic results. For instance, blue whitish veil, atypical pigmen-
tation network, and irregular streaks can be important concepts for diagnosing
melanoma skin disease [12]. Given the concept annotations, current ante-hoc
concept-based models mainly fall into two categories. The first is joint training
for the target task and concept representation learning [17, 6, 16]. For example,
Concept Bottleneck Model (CBM) [17] first predicted concepts and then made
final predictions, but its generalization capability is much lower than standard
end-to-end models. The second is to inject concepts from an external concept
dataset to train deep neural networks by modifying a middle layer to represent
concepts [3, 25, 21, 13]. Chen et al. [3] proposed a concept whitening layer, con-
sisting of whitening and orthogonal transformation to align the concepts with
the axes. These methods achieve good interpretability on natural images due to
two primary reasons. First, a majority of images contain only one concept that
is highly related to the category (e.g., airplane→airfield). Second, they have
fine-grained concept annotations (e.g., bounding boxes) to crop concept regions
from raw images. In this way, a set of most representative images that depict
the concept can be collected to generate precise concept features.

However, medical images present a more complex challenge compared to
natural images. A medical image usually contains multiple concepts, such as
different types of lesions or abnormalities, that need to be considered for accu-
rate classification. Moreover, obtaining fine-grained concept annotations such as
masks or bounding boxes for medical images is time-consuming and laborious.
The available concept information is often limited to coarse, image-level concept
labels. To address the above issues, we propose a novel method named Concept-
Attention Whitening (CAW) to enhance the representation interpretability of
skin lesion diagnosis, where the axes of latent space are aligned with specific
concepts. The main contributions of our method are three folds: (1) We es-
tablish a unique dual-branch optimization framework. In the disease diagnosis
branch, given a disease dataset, we train a convolutional neural network (CNN)
to perform disease classification with a novel CAW layer inserted. The CAW
layer aims to decorrelate features by whitening transformation and assign con-
ceptual meanings to specified dimensions via an orthogonal matrix. (2) In the
concept alignment branch, we use a concept dataset to calculate the orthogonal
matrix based on concept features. As an image may contain multiple concepts, we
particularly introduce a weakly-supervised concept mask generator to produce
concept-attentive masks by only using the concept labels. The concept mask
highlights the most relevant local regions regarding a certain concept. In this
way, we can obtain representative concept features and calculate an accurate or-
thogonal matrix by solving an optimization problem. (3) Extensive experiments
were conducted on two skin lesion diagnosis datasets with concept annotations.
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Fig. 1. An overall framework of the proposed Concept-Attention Whitening (CAW),
including (a) a disease diagnosis branch and (b) a concept alignment branch.

Compared with existing state-of-the-art methods, our proposed method not only
enhanced interpretability but also maintained a high diagnostic performance.

2 Methodology

Our overall objective is to train an interpretable disease diagnosis model that
satisfies: (1) high disease diagnosis performance; and (2) the latent image features
produced by the model are aligned to a pre-defined set of concepts. To achieve
this goal, we propose a novel Concept-Attention Whitening (CAW) framework
for interpretable skin lesion diagnosis using clinical concepts, as illustrated in Fig.
1. Specifically, a Concept-Attention Whitening layer is inserted into the encoder
network to disentangle concepts and align the latent image features with known
concepts of interest. For network training, we adopt a dual-branch architecture,
comprised of disease diagnosis and weakly-supervised concept alignment.

2.1 Disease Diagnosis Branch

Given the disease datasetD = {(xi, yi)}Ni=1 where yi is the disease label of sample
xi, we train a CNN (e.g., ResNet-50) to classify the skin disease. We replace the
Batch Normalization (BN) layer with our Concept-Attention Whitening (CAW)
layer to produce intepretable representations. Let Z ∈ Rb×d×h×w be the feature
map before the CAW layer, where b, d, h, and w denote the batch size, dimension,
height, and width. The CAW layer is composed of two operations: (1) a whitening
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transformation to separate different concepts in the latent space; and (2) an
orthogonal transformation to align the axes of latent space with pre-defined
concepts. Next, we will introduce each operation in detail.
Whitening transformation. First, we flatten the feature map Z ∈ Rb×d×h×w

into shape d × n, where n = b × h × w. Then, a whitening transformation ψ is
adopted to decorrelate and standardize the feature Z by:

ψ(Z) =W (Z − µ11×n), (1)

where µ is the mean of n samples; W ∈ Rd×d is the whitening matrix which
can be calculated by ZCA algorithm [11]. After whitening, each dimension of
the feature becomes mutually independent.
Orthogonal transformation. In this step, we align each separated dimension
to a specific concept. This is achieved by leveraging an orthogonal matrix Q ∈
R

d×d, in which the column qk is defined as the feature of concept ck. For the
calculation of the matrix Q, we particularly propose a weakly-supervised concept
alignment, which will be elaborated in the next section. As the whitening matrix
W is rotation-free, QTW is also a valid whitening matrix. Thus after CAW, we
can obtain the interpretable feature Z ′ = QTψ(Z) and reshape it into its original
size b× d× h× w for subsequent computation.

Finally, the feature map Z ′ is fed into the rest of the network to predict the
disease label by the following objective:

min
1

N

N∑
i=1

Lce(g(Q
Tψ(f(xi))), yi), (2)

where f and g are layers before and after the CAW layer respectively. ψ is a
whitening transformation. Q is the orthogonal matrix. Lce is the cross-entropy
loss for skin disease classification.

2.2 Concept Alignment Branch

The concept alignment branch aims to estimate an orthogonal matrix Q for the
disease diagnosis branch by leveraging the concept dataset Xc. Specifically, the
concept dataset Xc = {Xck}Kk=1 consists of K subsets of images, where each Xck

represents the images with concept ck. We develop a weakly-supervised concept
mask generator to identify concept-attentive features, which serve as guidance
for refining the orthogonal matrix Q.
Weakly-supervised concept mask generator. First, we pre-train a concept
classification network on the concept dataset Xc supervised by concept labels.
We generate concept activation maps from the pre-trained concept classification
network in a weakly-supervised manner. Formally, given a concept feature map
Zcon ∈ Rd×h×w, the weights of the classifier W ∈ Rd×K can be regarded as
the prototypes of K concepts. With regard to the predicted concept class ck, we
select the corresponding prototype Wck ∈ Rd and measure its similarity with
each pixel of the feature map Zcon. The activation value of Mck(i, j) at spatial
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location (i, j) is calculated by summing the multiplication of Wck and Zcon(i, j)
across the channel dimension:

Mck(i, j) =
∑
d

Wck
d · Zcon

d (i, j). (3)

The activation map Mck ∈ Rh×w is normalized to the interval [0, 1]. We further
binarize the concept map by a pre-defined threshold γ to generate the concept
mask, which is used to filter the most discriminative concept features:

M̃ck(i, j) =

{
1, if Mck(i, j) > γ

0, otherwise
. (4)

The concept mask M̃ck ∈ {0, 1}h×w highlights one specific concept of interest
ck in the image, and it is subsequently used to guide the optimization of Q.
Optimization of Q. To align the k-th feature dimension with concept ck, we
need to find an orthogonal matrix Q ∈ Rd×d whose column qk corresponds to
the k-th axis, by optimizing the concept alignment objective:

max
q1,q2,...,qK

K∑
k=1

1

|Xck |
∑

xck
∈Xck

qTk AvgPool(M̃ck ⊙ ψ(f(xck)))

s.t QTQ = Id

, (5)

where AvgPool denotes average pooling over the spatial dimension, resulting in
a concept-attentive feature vector with shape d× 1. This optimization problem
is a linear programming problem with quadratic constraints (LPQC), which is
generally NP-hard. Since directly solving the optimal solution is intractable, we
optimize it by gradient methods on the Stiefel manifold [24]. At each step t, the
orthogonal matrix Q is updated by Cayley transform:

Q(t+1) = (I +
η

2
A)−1(I − η

2
A)Q(t), (6)

where η is the learning rate, A = G(Q(t))T −Q(t)GT is a skew-symmetric matrix
and G is the gradient of the loss function.

3 Experiments

3.1 Datasets and Implementation Details

Datasets. Derm7pt [12] consists of 1,011 dermoscopic images, annotated with
disease and clinical concept labels. Following [19, 2], we filter the dataset to ob-
tain a subset of 827 images. The disease categories include nevus and melanoma,
and the concept categories cover 12 elements from the 7-point checklist [1]. Skin-
Con [4] includes 3,230 images from the Fitzpatrick 17k skin disease dataset [9]
that are densely annotated with 48 clinical concepts. The disease categories com-
prise malignant, benign, and non-neoplastic. We select 22 concepts that have at
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Table 1. Disease diagnosis results of concept-based state-of-the-art methods. We report
the results as meanstd of three random runs.

Method Derm7pt SkinCon

AUC ACC F1 AUC ACC F1

ResNet [10] 89.480.46 84.480.47 80.600.69 80.850.71 78.850.57 77.800.64

Sarkar et al. [23] 76.222.06 73.891.47 66.811.23 68.211.44 71.141.21 71.321.38

PCBM [25] 72.962.19 76.981.39 71.041.15 68.941.59 71.041.13 70.470.75

PCBM-h [25] 83.271.14 79.890.89 74.481.37 69.531.67 72.281.39 72.281.29

CBE [19] 76.600.35 83.750.26 78.130.44 72.751.15 73.751.10 73.561.31

MICA w/ bot [2] 84.111.10 82.201.31 78.081.22 75.891.11 74.291.09 74.741.21

MICA w/o bot [2] 85.591.11 83.940.99 79.381.34 75.921.13 75.631.07 75.431.24

CW [3] 86.500.40 83.850.48 80.000.75 79.490.60 78.280.57 77.300.67

CAW (ours) 88.600.10 84.790.79 81.340.85 80.470.24 79.000.19 77.760.57

least 50 images representing the concept. The dataset is partitioned into 70%,
15%, and 15% for training, validation, and testing, respectively. The specific
concepts used in the two datasets are enumerated in the Supplemental Material.
Implementation details. For the Derm7pt [12] and SkinCon [4] datasets, we
employ the ImageNet-pretrained ResNet-18 and ResNet-50 models [10] as the
backbones, respectively. We replace the BN with CAW layer in the 8/16-th
layer for ResNet-18/50. All images are resized to 224×224. Data augmentation
includes random horizontal flip, random cropping, and rotation. The network is
trained for 100 epochs with a batch size of 64 and a learning rate of 2e-3. We
adopt AUC, ACC, and F1 score as the evaluation metrics.

3.2 Experimental Results

Skin disease diagnosis. We compare the performance of skin disease diagnosis
of our proposed CAW with other state-of-the-art methods, as shown in Table 1.
To establish an upper bound, we first train a standard black-box ResNet model
without the interpretability of concepts. In comparison, the group of CBM-based
models [23, 25, 19, 2] demonstrates a significant performance decrease for skin
disease diagnosis, despite enhancing interpretability. Notably, the vanilla CW
model [3] shows superior diagnosis performance, surpassing all the CBM-based
methods across all the evaluation metrics. With concept attention, our proposed
CAW significantly further improves the skin disease diagnosis performance on
both datasets. CAW approaches the performance of the black-box model in terms
of AUC, and even surpasses it on ACC and F1.
Concept detection. We conduct concept detection to measure the interpretabil-
ity of our CAW quantitatively. Following [3], we calculate the one-vs-all test AUC
score of classifying the target concept in the latent space. We compare our CAW
with the concept vectors learned by TCAV [15] from black-box models, the fil-
ters in standard CNNs [26], and CW [3]. As illustrated in Fig. 2, our CAW
outperforms all the other methods on the average AUC score, reaching 77.4%
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Derm7pt SkinCon

Fig. 2. Comparison of concept detection on Derm7pt and SkinCon.

on Derm7pt and 78.1% on SkinCon. Moreover, our CAW demonstrates superior
or comparable detection performance on most concepts.

3.3 Ablation Study and Discussion

Effect of concept attention mask. We conduct an ablation study to inves-
tigate the effect of our generated concept mask. As shown in the first row of
Table 2, the baseline approach, which merely uses the raw image as the concept
map, yields the poorest performance, as it fails to capture precise concept fea-
tures. The random and center-gaussian maps appear to enhance the performance,
which can be attributed to their roles as a source of Cutout augmentation [5]. To
take a step further, we trained a skin lesion segmentation model [22] to generate
lesion masks, effectively eliminating redundant regions in the images and empha-
sizing the entire lesion area, leading to improved performance. However, there
still exists a difference between the lesion area and the concept regions. Finally,
our generated concept masks by thresholding on concept maps accurately local-
ize concept regions, resulting in the best performance in terms of both disease
diagnosis and concept detection.

Table 2. Ablation study on concept mask.
Method Disease Diag. Concept Det.

raw image 86.96 74.79
gaussian map 87.16 74.92
random map 87.78 75.93
lesion mask 87.94 75.55
concept map 88.13 76.23
concept mask 88.60 77.40

Table 3. Analysis on threshold.
γ Disease Diag. Concept Det.

0 86.95 74.79
0.2 87.68 77.12
0.5 88.60 77.40
0.6 88.44 77.21
0.8 88.63 76.52
1.0 87.92 76.03
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Fig. 3. (a) Analysis on concept importance. (b) An example of explanations.

Analysis on threshold. We also investigate the impact of different binarization
threshold values for concept mask generation. The results in Table 3 demonstrate
that the performance consistently maintains a high level within the intermediate
range of 0.5 to 0.8, indicating the robustness of our model to the choice of
threshold. It is believed that a very small threshold would lead to the presence of
concept-irrelevant regions, while a large threshold results in the loss of potential
key concept information.

Concept importance. We measure the contribution of concepts to the dis-
ease diagnosis. The importance of the k-th concept CIk is defined as the ratio
between the switched loss and the original loss [8], which is given by CIk =
losskswitch/lossorig. Here, lossorig denotes the original loss produced by the net-
work without any permutation. To calculate the switched loss losskswitch, we
randomly permute the k-th value of the concept feature along the batch dimen-
sion, i.e., replacing the k-th concept value of the current sample with another
one from the batch. This indicates that the switched loss is expected to be large
if the k-th concept is important for the current sample. We show the concept im-
portance scores on Derm7pt. The results depicted in Fig. 3 (a) indicate the top
three important concepts for melanoma and nevus, respectively, which confirm
the consistency with the findings of dermatologists [18].

Example of explanation. We present an example that demonstrates how our
CAW can offer comprehensible explanations during the disease diagnosis pro-
cess, as illustrated in Fig. 3 (b). For an input image, the activation value of its
representation can be interpreted as the probability associated with a certain
concept. Based on the activation values, a textual explanation can be derived to
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describe the image, and visual explanations can be generated simultaneously to
emphasize the specific concept regions.

4 Conclusion

In this work, we propose an intrinsic interpretable XAI model based on con-
cept, i.e., Concept-Attention Whitening (CAW), for skin lesion diagnosis. CAW
consists of a disease diagnosis branch and a concept alignment branch. We specif-
ically incorporate a weakly-supervised concept mask generator to filter the most
relevant local regions, benefiting precise optimization of the orthogonal matrix
in the CAW layer. Experiments on two skin lesion diagnosis datasets demon-
strated the interpretability and superior diagnostic performance of CAW. In
future work, we will consider the correlation of concepts by softening the or-
thogonality constraints in CAW, which is expected to promote the discovery of
new concepts.
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