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Abstract. Structure inconsistency is the key challenge in registration of
brain MRI between pre-operative and follow-up phases, which misguides
the objective of image similarity maximization, and thus degrades the
performance significantly. The current solutions rely on bidirectional reg-
istration to find the mismatched deformation fields as the inconsistent
areas, and use them to filter out the unreliable similarity measurements.
However, this is sensitive to the accumulated registration errors, and
thus yields inaccurate inconsistent areas. In this paper, we provide a
more efficient and accurate way, by letting the registration model itself
to ‘speak out’ a Noise Removed Inconsistency Activation Map (NR-IAM)
as the indicator of structure inconsistencies. We first obtain an IAM by
use of the gradient-weighted feature maps but adopting an inverse di-
rection. With this manner only, the resulting inconsistency map often
occurs false highlights near some common structures like venous sinus.
Therefore, we further introduce a statistical approach to remove the com-
mon erroneous activations in IAM to obtain NR-IAM. The experimental
results on both public and private datasets demonstrate that by use of
our proposed NR-IAM to guide the optimization, the registration per-
formance can be significantly boosted, and is superior over that relying
on the bidirectional registration by decreasing mean registration error
by 5% and 4% in near tumor and far from tumor regions, respectively.
Codes are available at https://github.com/chongweiwu/NR-IAM.

Keywords: Structural Inconsistency · Inconsistency Activation Map ·
Unsupervised Registration.

1 Introduction

Accurate registration of longitudinal brain MRI between pre-operative and
follow-up phases is crucial to treatment decision, therapy assessment and signa-
tures analysis for infiltrated tissues [1,15]. However, there are various challenges,

† Equal contribution.

https://github.com/chongweiwu/NR-IAM


2 Chongwei Wu et al.

and among them structural inconsistency across images, caused by tumor’s resec-
tion and recurrence, is the key issue that prevents high-quality performance [3].

Forcibly maximizing the similarity of images containing inconsistencies
like [18, 25] leads to chaotic deformations of those inconsistent areas, and
also negatively affects the surrounding normal tissue registration. Various ap-
proaches have been proposed to combat this problem, and can mainly di-
vide into: 1) Reconstruction-based method [10, 11, 16, 17] and 2) Mask-based
method [5,7,9,14,20]. Reconstruction-based methods convert abnormal images to
pseudo-normal images, and introduce the pseudo appearance to guide the spatial
transformation of lesions. However, modeling pseudo appearance with statistical
models [11,16] require additional data from healthy populations. Some inpainting
methods [10,24] learn from the normal regions of abnormal images, requiring ex-
tra segmentation of lesions. Moreover, these reconstruction models learning from
normal tissues cannot simulate the pseudo-normal appearance with mass effect,
leaving the incosistency issue still unsolved.

Mask-based methods remove the similarity measurement of inconsistency to
avoid the implausible deformations. However, these methods require accurate
localization of inconsistent regions. Earlier studies [5, 7] rely on manual delin-
eations, which are labor-intensive and costly. Alternatively, some unsupervised
schemes [6, 20, 21] have been proposed. Risholm et al. [21] detects the inconsis-
tencies by a level set method evolving in the space where image intensities dis-
agree. Liu et al. [17] applies a seg-model based on minimal mutual information
to distinguishes inconsistency areas from background. However, their location
is independent of the registration task, which may restrict the performance of
registration. Then, Mok et al. [20] leverages a forward-backward consistency of
deformation fields to find the mismatch as inconsistencies. However, it yields in-
accurate inconsistency areas with the disturb of accumulated registration errors.

Therefore, to effectively address the inconsistency issue in abnormal image
registration, locating registration-target-specific inconsistency is necessary. In
this paper, we present a novel mask-based method, by visualizing the deep rep-
resentation of registration model to obtain a Noise Removed Inconsistency Ac-
tivation Map (NR-IAM), for robust localization and registration of inconsistent
areas in a coupled way. Our motivation is based on the Class Activation Map-
ping techniques [23, 26], which can creatively locate target-specific regions via
weighted feature maps. To this end, we have inconsistency activation map (IAM)
acquired from the reverse activation of feature maps. However, the resulting
map contains noise activations near some common structures like venous sinus.
Thanks to the homogeneity of brain tissue and structure, we thus propagate
global activations into a target space and subsequently superimpose the global
maps to extract the common erroneous activations, which are finally removed
from the IAM to obtain NR-IAM. In summary, our key contributions include:

− We propose a novel NR-IAM, firstly introducing target-specific inconsistency
map for unsupervised registration of brain tumor MRI.

− We propose a reverse activated IAM that reveals the target-specific incon-
sistencies. Then, permitted by the homogeneity of brain tissue, we obtain a
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Fig. 1. Diagram of our proposed framework. (a) Pretraning with IAM, (b) Extraction
of common erroneous activations and (c) Finetuning with NR-IAM.

superimposed noise map to remove the common erroneous activations of the
inconsistency map.

− Extensive and comprehensive experimental results on both public and pri-
vate datasets demonstrate that NR-IAM outperforms the state-of-the-arts
(SOTA) by decreasing the mean target registration error at least by 4% and
shows the superior localization abilities for inconsistency.

2 Methods

As shown in Fig. 1, to better register abnormal images, we introduce Gradient-
Weighted Inconsistency Activation Mapping (Grad-IAM) layer to perceive
target-specific inconsistencies and Noise Mapping Process (NMP) to statistic
the common erroneous activations. Thus, NR-IAM acquired from the collabora-
tions of the two modules can effectively locate inconsistencies. We will detail how
to obtain IAM, common erroneous activations and implement model training.

2.1 IAM Acquired from Grad-IAM

Inspired by Grad-CAM [23], we propose Grad-IAM to locate the inconsistencies
across the registered moving m ◦ ϕmf and fixed f images, where ϕmf and "◦"
indicate displacement field and spatial transformation, respectively.

We build our method on top of 3-level clapIRN [19] and extend it for unsuper-
vised location and registration of scans with structural inconsistency. Our model
takes m and f as inputs and produces a combined displacement field ϕmf and
intermediate feature maps Amf ∈ RC×W×H×D, generated by the penultimate
convolution layer, as outputs. Then, we back propagate the gradient of images
similarity to the c-th feature map Ac

mf , obtaining the corresponding weight wc
mf :

wc
mf =

1

Z

∑
x∈Ω

∂Sim(f,m ◦ ϕmf )

∂Ac
mf (x)

. (1)
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where Sim(·), x and Z indicate the similarity measure, voxel space over 3-
dimensional space Ω and voxel number, respectively. Then, we reverse the weight
and compute channel-wise inconsistencies to obtain inconsistency map IAMf :

IAMf =
∑
c∈C

ReLU(−wc
mf ×Ac

mf ). (2)

2.2 Common Erroneous Activations Extracted from NMP

The IAM acquired from Grad-IAM contains erroneous activations, near some
common structures like venous sinus. Fortunately, brain tissue and structure
exhibit homogeneity, while tumor’s occurrences are dispersed. Therefore, a global
superimposed IAM may aid to the localization of the common noises. We thus
propose NMP in Fig. 1(b) to extract the common erroneous activations.

Let P = {mj} ∈ RN×W×H×D and F = {fj} ∈ RN×W×H×D be the pre-
operative and follow-up datasets in the training set, respectively. Firstly, we
employ a pretrained model in Fig. 1(a) to exploit global activation information.
Each spatially-paired scans, mj and fj , are fed into the pretrained model to
obtain coarse activation map IAMfj . Then, we reuse the pretrained model to
estimate displacement fields ϕfjf , propagating each corresponding activation
map IAMfj into a target space of f . Now, a spatial average pooling retains the
common erroneous activations IAMf :

IAMf =
1

N

∑
j∈N

IAMfj ◦ ϕfjf . (3)

Moreover, a 1/0 indicator is utilized to extract the noise mask NMf :

NMf =

1, if
IAMf −mean(IAMf )

std(IAMf )
≥ β

0, else.

(4)

where β is a threshold manually set as 2.6. Then ÑMf = 1 − NMf is multi-
plied with IAMf (acquired from fine-tuning model) to obtain a noise removed
inconsistency map NR-IAMf .

2.3 Model Training

In the pretraining stage (Fig. 1(a)), we randomly select m and f from P and F
as training pair, and use the coarse inconsistency maps IAMf and IAMm for
optimization, where the IAMf and IAMm are binarized with Eq. (4) to obtain
Mf and Mm for the masking of inconsistency voxels. While in the later fine-
tuning stage (Fig. 1(c)), we finetune the pretrained model with spatially-paired
scans, m and f , and use the NR-IAMf and NR-IAMm for optimization, where
the NR-IAMf and NR-IAMm are binarized with Eq. (4) to obtain Mf and
Mm for the masking of inconsistency voxels.
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Objective functions With the inconsistency masks Mf and Mm, we optimize
our framework by using 3 loss functions: Lsim, Lreg and Lbid. Lsim is a similarity
term to minimize the dissimilarity between m and f at consistent areas, which
is formulated as:

Lsim = −NLCC(f,m ◦ ϕmf )× M̃f −NLCC(m, f ◦ ϕfm)× M̃m. (5)

where NLCC indicate normalized local cross-correlation. ϕmf and ϕfm repre-
sent forward and backward displacement fields, respectively. Lreg is a regular
term to penalize implausible deformation and regularize contiguous motion to
propagate deformation from correspondence surroundings to non-correspondence
parts, which can be formulated as:

Lreg = ∥ϕmf∥22 + ∥ϕfm∥22. (6)

Lbid is a bidirectional constraint to penalize the invertible transforms at cor-
respondence regions. Mathematically, Lbid is calculated as:

Lbid =
∑

δmf × M̃f + δfm × M̃m. (7)

both δmf (x) = |ϕmf (x) + ϕfm(x+ ϕmf (x))|2 and δfm(x) = |ϕfm(x) + ϕmf (x+
ϕfm(x))|2 represent the symmetrical error of bidirectional transforms. Finally,
the complete training loss can be written as:

Ltotal = Lsim + Lreg + Lbid. (8)

3 Experiments

3.1 Datasets and Implementation Details

Dataset and Preprocess We evaluate NR-IAM on a public dataset, i.e.,
BraTS-Reg [3] and a private dataset. BraTS-Reg is a multimodal dataset that
contains 160 pairs of pre-operative and follow-up brain tumor MRI scans. Among
them, 140 pairs are annotated with 6 to 50 matching landmarks in both scans. We
follow [20] to conduct 5-fold cross-validation on contrast-enhanced T1-weighted
(T1ce) scans of the 140 cases. The Private dataset contains 254 unpaired T1ce
scans, of which 109 are labeled with tumors by experienced clinicians, while the
remaining 146 scans are not. We combine the unlabeled images and BraTS-Reg
as training data, and use the labeled data for validation. Specifically, we align
an almost normal scan to the others for validation.

To ensure the approaches focused on the deformable registration problem,
all included scans are reoriented to the RAS orientation with a 1 mm3 isotropic
resolution and affinely aligned to the anatomical template (i.e., SRI24 atlas [22]).
Then, to reasonably evaluate registration performance, we divide brain tumor
images into 4 separate regions, i.e, tumor, near tumor (within 30 mm of tumor
boundary), far from tumor (over 30 mm of tumor boundary) and background
regions. We only measure the registration performance in near tumor (region 1)
and far from tumor (region 2) regions. For BraTS-Reg, we use the DeepMedic [12]
to obtain tumor segmentation of each pre-operative scan to divide the 4 regions.
For private data, we use the labeled tumor to distinguish the 4 regions.
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Table 1. Comparison results of various methods on BraTS-Reg dataset. The best is
marked in bold. initial: spatial normalization. ↑: higher is better, and ↓: lower is better.

Method Near Tumor Far from tumor

TRE ↓ Robustness ↑ |Jϕ| ≤ 0(%) ↓ TRE ↓ Robustness ↑ |Jϕ| ≤ 0(%) ↓

initial 6.95± (5.21) - - 5.64± (5.08) - -
Elastix 3.62± (2.67) 0.80± (1.92) 0.00± (0.00) 2.16± (1.92) 0.77± (0.27) 0.00± (0.00)
Ants 4.87± (5.69) 0.56± (0.35) 0.00± (0.00) 2.74± (0.28) 0.54± (0.27) 0.00± (0.00)
VoxelMorph 3.85± (2.69) 0.79± (0.30) 0.16± (0.83) 2.08± (0.94) 0.81± (0.24) 0.14± (0.15)
VoxelMorph-diff 3.92± (2.75) 0.79± (0.29) 0.00± (0.00) 2.09± (1.02) 0.77± (0.27) 0.00± (0.00)
cLapIRN 3.73± (2.83) 0.77± (0.29) 0.35± (0.76) 1.96± (1.07) 0.81± (0.25) 0.21± (0.31)
DIRAC 3.36± (2.47) 0.80± (0.29) 0.48± (0.76) 1.85± (0.85) 0.81± (0.24) 0.17± (0.27)
NR-IAM 3.18± (2.45) 0.81± (0.29) 0.02± (0.05) 1.77± (0.80) 0.82± (0.24) 0.02± (0.08)

Table 2. Comparison results of various methods on private dataset.

Method Near Tumor Far from tumor

NCC ↑ MI ↑ |Jϕ| ≤ 0(%) ↓ NCC ↑ MI ↑ |Jϕ| ≤ 0(%) ↓

Elastix 0.593± (0.116) 0.533± (0.141) 0.00± (0.00) 0.648± (0.041) 0.606± (0.041) 0.00± (0.00)
Ants 0.640± (0.122) 0.557± (0.160) 0.00± (0.00) 0.718± (0.053) 0.689± (0.087) 0.00± (0.00)
VoxelMorph 0.645± (0.107) 0.582± (0.147) 0.15± (0.23) 0.691± (0.040) 0.673± (0.078) 0.10± (0.11)
VoxelMorph-diff 0.652± (0.104) 0.581± (0.146) 0.00± (0.00) 0.697± ((0.039) 0.669± (0.077) 0.00± (0.00)
cLapIRN 0.820± (0.061) 0.838± (0.197) 3.22± (1.63) 0.874± (0.021) 0.955± (0.099) 1.70± (0.44)
DIRAC 0.826± (0.060) 0.853± (0.204) 1.33± (0.52) 0.877± (0.021) 0.996± (0.101) 0.81± ((0.19)
NR-IAM 0.831± (0.058) 0.883± (0.200) 0.60± (0.55) 0.882± (0.019) 1.015± (0.102) 0.21± (0.16)

Implementation Details For learning-based methods, we resize input scans
to 160×160×80, set the batch size to 1 and use Adam optimizer with a fixed
learning rate 1e-4 for optimization. Then, we upsample the output displacement
fields to 1 mm3 isotropic resolution with bi-linear interpolation for evaluation.
We implement all these methods with PyTorch 1.10 on a platform containing a
GPU resource of NVIDIA RTX 4090 and a CPU resource of Intel Xeon Gold
6230R.

Measurements Five measurements are considered in this study, where two
(the average target registration error (TRE) and robustness) measure the point-
wise similarity, two (NCC and MI) measure the image-wise similarity, and one,
i.e., the percentage of the number of values in the Jacobian determinant that
are no greater than 0 (denote as |Jϕ| ≤ 0(%)) measures the local invertibility of
deformation. We follow [20] to register each pre-operative scan to follow-up scan
and invert the landmarks of follow-up scan to the corresponding landmarks of
pre-operative scan to measure the TRE with Euclidean distance in millimetres,
and define the robustness as the proportion of successfully registered landmarks
in each case. We calculate NCC, MI and |Jϕ| ≤ 0(%) in the foreground regions.

3.2 Results and Discussions

Comparison with other methods We compare NR-IAM with two conven-
tional methods, i.e., Elastix [13] and ANTs [2], and four learning-based networks,
i.e., VoxelMorph [4], VoxelMorph-diff [8] cLapIRN and DIRAC [20] (an open-
sourced SOTA method) on both public and private datasets. Table 1 gives the
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Fig. 2. Visualization of warped results (P to F) from different registration methods.
Implausible deformations are highlighted with green arrows. The estimated inconsistent
maps and regions of our method are shown next to our results, where the regions are
overlaid with both moved and fixed images (in red).

comprehensive results of various methods in regions 1 and 2 across the 140 sub-
jects of BraTS-Reg. Comparing to other methods, the lower average TRE, higher
robustness and second best |Jϕ| ≤ 0(%) of NR-IAM in both regions indicate our
method achieves the best overall performance. Specially, NR-IAM has the lowest
average TRE of 3.18 and 1.77 mm in region 1 and 2, respectively, which reduces
average TRE by 0.18 mm (5%) and 0.08 mm (4%) compared to DIRAC.

We also conduct experiments on our private dataset. Table 2 gives the quan-
titative results in the 2 regions. As can be seen, our method achieves the best
performance compared to other methods in terms of all metrics except the
|Jϕ| ≤ 0(%). Meanwhile, Fig. 2 visualize the registration results of each method
and the estimated inconsistency maps and inconsistent regions of NR-IAM on
the two datasets. The results present that our method can accurately locat-
ing inconsistencies, i.e, tumor and edema regions across the registered images,
and can better reduce implausible deformations in the patients-specific image
registration compared to other methods.

Comparison with different masks We further report the results of baseline
method clapIRN optimized with 6 masks on BraTS-Reg for comparison, where
two trained with tumor core and whole tumor acquired from DeepMedic, one
trained with mask inferred by NLCC Loss, and three trained with learning-based
masks acquired from inversely operated Grad-CAM (denoted as Grad-CAM−),
DIRAC and NR-IAM, respectively. Table 3 shows that NR-IAM achieves the
best performance in terms of all metrics except the robustness term in region
2. Notably, NR-IAM overally decreases the average TRE of other masks by
0.23 mm (7%) and 0.10 mm (5%) in regions 1 and 2, respectively. And the
localization results in Fig. 3 indicate our method can more accurately locate
stuctural inconsistencies across registered scans compared to location acquired
from NLCC Loss, Grad-CAM− and DIRAC.
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Table 3. The results of cLapIRN optimized with various masks on BraTS-Reg dataset.

Method Near Tumor Far from tumor

TRE ↓ Robustness ↑ |Jϕ| ≤ 0(%) ↓ TRE ↓ Robustness ↑ |Jϕ| ≤ 0(%) ↓

Tumor core 3.41± (2.54) 0.81± (0.26) 0.74± (0.48) 1.92± (1.17) 0.80± (0.26) 0.20± (0.27)
Whole tumor 3.44± (2.62) 0.81± (0.26) 0.22± (0.19) 1.89± (1.00) 0.83± (0.22) 0.15± (0.24)
NLCC Loss 3.45± (2.58) 0.79± (0.28) 0.23± (0.20) 1.85± (0.88) 0.82± (0.24) 0.12± (0.26)
Grad-CAM− 3.37± (2.53) 0.81± (0.27) 0.67± (0.50) 1.84± (0.90) 0.81± (0.23) 0.16± (0.21)
DIRAC 3.36± (2.47) 0.80± (0.29) 0.48± (0.29) 1.85± (0.85) 0.81± (0.24) 0.17± (0.27)
NR-IAM 3.18± (2.45) 0.81± (0.29) 0.02± (0.05) 1.77± (0.80) 0.82± (0.24) 0.02± (0.08)
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Fig. 3. Bidirectional location results from 4 unsupervised location methods. The esti-
mated inconsistent regions are overlaid with warped images (in red). The inconsistency
maps are shown next to the regions.

Ablation study We conduct an ablation study on BraTS-Reg to verify the
effectiveness of our modules, i.e., Grad-IAM and NMP. The first variant is trained
without the two modules. The second variant trained with Grad-IAM. The last
variant trained with the collaborations of Grad-IAM and NMP. Results in Table
4 demonstrate the two modules well boost the registration performance, and the
Grad-IAM can significantly decrease mean TRE of the first variant by 0.53 (14%)
and 0.16 (8%) mm in region 1 and 2 (see the 1st and 3rd rows). Comparing to
the second variant, we also observe that NMP slightly reduces the registration
error by 1% and 2% (see the 2nd and 3rd rows) in region 1 and 2, respectively.

Table 4. The ablation study for each part of NR-IAM. Grad-IAM: gradient-weighted
inconsistency mapping. NMP: noise mapping process.

Grad-IAM NMP Near Tumor Far from tumor

TRE ↓ Robustness ↑ |Jϕ| ≤ 0(%) ↓ TRE ↓ Robustness ↑ |Jϕ| ≤ 0(%) ↓

− − 3.73± (2.83) 0.77± (0.29) 0.35± (0.76) 1.96± (1.07) 0.81± (0.25) 0.21± (0.31)
✓ − 3.20± (2.38) 0.81± (0.27) 0.09± (0.19) 1.80± (1.07) 0.83± (0.22) 0.03± (0.12)
✓ ✓ 3.18± (2.45) 0.81± (0.29) 0.02± (0.05) 1.77± (0.80) 0.82± (0.24) 0.02± (0.08)

4 Conclusion

We have presented a novel unsupervised registration method for brain MRI
registration between pre-operative and follow-up phases, which can efficiently
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locate inconsistent regions by letting the registration model itself to ’speak out’
a NR-IAM. Specifically, we have NR-IAM obtained from Grad-IAM and puri-
fied by NMP. Hence, our registration performance can be significantly boosted.
We verify our method on both public and private datasets. Experimental results
demonstrate our method surpasses the SOTA method that relying on the bidi-
rectional constraint. An ablation study also verified the effectiveness of our pro-
posed modules, i.e. Grad-IAM and NMP. In the future, we attempt to enhance
the localization of inconsistencies to improve the registration performances.
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