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Abstract. Digital pathology slides can serve medical practitioners or
aid in computer-assisted diagnosis and treatment. Collection person-
nel typically employ hyperspectral microscopes to scan pathology slides
into Whole Slide Images (WSI) with pixel counts reaching the million
level. However, this process incurs significant acquisition time and data
storage costs. Utilizing super-resolution imaging techniques to enhance
low-resolution pathological images enables downstream analysis of patho-
logical tissue slice data under low-resource and cost-effective medical
conditions. Nevertheless, existing super-resolution methods cannot inte-
grate attention information containing variable receptive fields and effec-
tive means to handle distortions and artifacts in the output data. This
leads to differences between super-resolution images and authentic images
depicting cell contours and tissue morphology. We propose a method
named MiHATP: A Multi(Mi)-Hybrid(H) Attention(A) Network Based
on Transformation(T) Pool(P) Contrastive Learning to address these
challenges. By constructing contrastive losses through reversible image
transformation and irreversible low-quality image transformation, Mi-
HATP effectively reduces distortion in super-resolution pathological im-
ages. Within MiHATP, we also design a Multi-Hybrid Attention structure
to ensure strong modeling capability for long-distance and short-distance
information. This ensures that the super-resolution network can obtain
richer image information. The experimental results show that MiHATP
achieves the best performance in both the super-image reconstruction and
downstream cell segmentation and phenotypes tasks. The implementation
code will be available at https://github.com/rabberk/MiHATP.git.
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1 Introduction

Precision medical technology involves customizing personalized treatment plans
for patients to achieve optimal therapeutic outcomes and success. Digital histopatho-
⋆ Corresponding authors: Y. Zhao and D. Bu.
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logical slides offer high-resolution tissue information, allowing physicians to
comprehend the histopathological details of patients and formulate effective
precision medical strategies [3, 19]. In recent years, with the rapid advancement
of computer-aided diagnostic technologies, a series of deep learning diagnostic
algorithms based on Whole Slide Image (WSI) pathology slides have been de-
veloped [2, 11, 14, 23]. These algorithms rely on the rich information provided
by high-resolution pathology slide images. Therefore, the inevitable results of
handling large volumes of high-resolution images prolong the data transmission
time and increase data storage costs. Meanwhile, scanning equipment for high-
magnification digital pathological slides is expensive [17] that not all hospitals
can support it. Therefore, the methods are urgently needed to obtain high-quality
pathological images at low cost.

Many previous works have demonstrated that super-resolution networks could
perform well on medical images [1, 15, 20, 26] such as CT, MRI, pathological
images, etc. On the other hand, since the success of Vision Transformer (ViT) in
high-level vision tasks, many ViT methods have recently been applied to various
low-level tasks [7, 10, 12, 26]. Among them, works such as SwinIR [16] and HAT
[5] have emerged successively in super-resolution research. Additionally, with
the rise of unsupervised learning, contrastive learning has achieved remarkable
success [4, 21]. Some works also make progress by combining contrastive learning
with super-resolution tasks. Gang Wu et al. [24] attempt to integrate a contrastive
learning scheme into super-resolution work, constructing an effective and task-
specific data augmentation strategy to generate multiple informative positive
and challenging negative samples, demonstrating impressive results. However,
these works are unsuitable for transferring to pathological digital pathology
images. This is because using sharpening methods to construct positive examples
for contrastive learning may potentially distort the contrast and color of the
super-resolution images, leading to artifacts in some tissue areas [13], which can
affect the performance of algorithms in downstream digital pathology image
analysis tasks. To address these issues, our study carefully integrates contrastive
learning into super-resolution networks, providing a new approach to improving
the analysis of low-magnification digital pathology images. The contributions of
our work can be summarized as follows:

– We construct a framework based on reversible and irreversible transformation
pools for contrastive learning on low-magnification tissue images in pathology.
This framework conducts contrastive learning simultaneously in both image
space and feature space, which effectively builds super-resolution pathological
images with more apparent cell contours and feature representations with more
robust local characterization.

– Our method incorporates a multi-hybrid attention mechanism, allowing for the
blending of multiple attention strategies. This enables our method to acquire
the most suitable receptive field information adaptively.

– We validate the comparison between different super-resolution methods and
MiHATP at multiple scales and verify the downstream cell segmentation and
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Fig. 1: Overview architecture of our proposed MiHATP model.

phenotypes tasks of super-resolution images under different methods. The
results show that our method achieves state-of-the-art performance.

2 Method

The entire pipeline of the MiHAPT is shown in Fig. 1. It consists of a Dual-
Branch Structure and a Contrastive Process, the framework operates as follows:
The Dual-Branch Structure utilizes two separate branches to generate the super-
resolution (SR) image and positive samples processed through a pairwise reversible
transformation pool. The Contrastive Process generates negative samples through
an irreversible transformation pool. The SR image, positive samples, and low-
quality negative samples are utilized for supervised contrastive learning in both
the image space and feature representation space.

2.1 Reversible and Irreversible Transformation Pool

As mentioned above, to avoid distortion of cell contours and artifacts, we did
not utilize the methods in existing work to construct contrastive loss for super-
resolution tasks. We construct a contrastive learning based on transformation
pools. The transformation pools consist of a pair of reversible transformation
pool for constructing positive examples and an irreversible transformation pool
for constructing the negatives. The structure is illustrated in Fig. 1, and we can
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generate the following contrastive learning set:

ISR
i = Fbase (ILR

i ; θbase ) (1)

XP
i = {Pj |Pj = Tinv(Fcon(Tfor(I

LR
i ); θcon)) }

Kp

j=1 (2)

XN
i = {Nj |Nj = Tirr(I

HR
i )}Kn

j=1 (3)

Among them, Kp and Kn represent the sample quantities of positive and negative
examples generated through the transformation pool. ISR

i represents the i-th
super-resolution images in training set produced by MiHATP, while XP

i and XN
i

denote the positive and negative samples of ISR
i . Fbase and Fcon represent the

two Super-Resolution Branch pipeline functions in the Dual-Branch structure,
and θbase and θcon represent the approximate parameters in the corresponding
networks. Tfor, Tinv, and Tirr respectively denote random transformation func-
tions in the reversible positive transformation, reversible inverse transformation,
and irreversible transformation pools.

The data transformed by reversible transformation pool maintains consistent
image quality with the original pathological slice patches, ensuring quality preser-
vation. Conversely, patches obtained through irreversible transformations serve
as negative examples in contrastive learning. We computed the cosine similarity
between super-resolution images and positive examples, as well as between super-
resolution images and negative examples, and thereby constructed a contrastive
loss. This helps moving super-resolution images away from negative examples in
both image and feature spaces, guiding them towards a more dispersed position
in the sample space.

2.2 Multi-Hybrid Attention

In conventional ViT architectures, to mitigate the computational cost and slow
convergence caused by an excessive number of keys participating in each query
patch, manual attention region restriction is commonly employed to limit the
receptive field. However, this approach often leads to the neglect of potentially
relevant long-range attention information. In MiHATP, the Dual-Branch frame-
work incorporating M-RHAG (dual-residual hybrid attention block groups) is
introduced to handle data from SR images and outputs of reversible positive
transformation pools.

The Dual-Branch structure consists of two pathways, a Base Branch and a
Contrastive Branch. Each comprises a set of M-RHAG blocks. Unlike the original
RHAG modules proposed in HAT[5], M-RHAG integrates multiple M-HAB
(multi-hybrid attention block) modules before the OCAB (Overlapping Cross-
attention Block) to enhance the network’s adaptability in selecting attention
region specific to each input with the DAT (Deformable Attention Transformer)
[25]. As illustrated in Fig. 1, each M-RHAG is connected by residual links to
several M-HAB blocks. Within the M-HAB modules, the following operations
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are applied to the input tensor X:

XNorm =Norm(X),

XMed = SW-MSA(XNorm) + αCAB(XNorm) + βDAT(XNorm),

XM-HAB = XNorm +MLP(Norm(XMed +X)) +XMed +X.

(4)

Where XNorm and XMed are the intermediate features, XM-HAB is the final
output of the M-HAB module. Norm is the layer normalization operation, and
MLP denotes a multi-layer perceptron. SW-MSA and CAB stand for Shifted
Window-based Self-attention and Channel Attention Block. α and β are the
weights set to prevent the possible conflict.

2.3 Loss Function

In MiHATP, the total loss of the network is defined as follows:

Losstotal = LossBase
L1 + LossCon

L1 + λLossCL (5)

Where λ is the weight of the contrastive loss LossCL, LossBase
L1 and LossCon

L1

are the L1 losses for Base Branch and Contrastive Branch, respectively. For an
output image with dimensions C ×H ×W , they are defined as follows:

LossBase
L1 =

1

N

N∑
i= 1

|IHR
i − Fbase(I

LR
i ; θbase)| (6)

LossCon
L1 =

1

N

N∑
i= 1

|Tfor(I
HR
i ) − Fcon(Tfor(I

LR
i ); θcon)| (7)

Here, N represents the number of training images. We employ supervised loss
to ensure effective training of the super-resolution networks for both the Base
Branch and Contrastive Branch.

We also utilize a novel contrastive learning in both image space and feature
space. This method aims to bring the original super-resolution images obtained
from the Base Branch closer and the positive images obtained after the inverse
transformation of the Contrastive Branch while pushing away the negative samples
obtained from the irreversible transformation. The defined LossCL is as follows:

LossCL =
1

L+ 1

L∑
l=0

LosslCL (8)

The contrastive loss LosslCL for each layer is defined as:

LosslCL =
−1

NKp

N∑
i=1

Kp∑
k=1

log
exp(Sim(rli, p

l,k
i )/τ))

exp(Sim(rli, p
l,k
i )/τ) +

Kn∑
j=1

exp(Sim(rli, n
l,j
i )/τ)

(9)
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Where τ is the temperature parameter, L is the number of layers in the feature
extraction network, Kp and Kn are the numbers of positive and negative samples
obtained through transformation pooling sampling, respectively. Sim is the
similarity calculation function, for which we utilize cosine similarity. In our
algorithm, contrastive learning is also applied to the image space information
of the SR output layer. {rli}Ni=1 represents the feature representation of the
i-th super-resolution image in the training set at the l-th layer of the feature
extraction network. {pl,ki }Kp

k=1 and {nl,j
i }Kn

l=1 denote the positive and negative
feature representations of the i-th image in the training set, respectively, at the
l-th layer of the feature extraction network. It is noteworthy that when l = 0, it
signifies the output of the image by the super-resolution network’s output layer.

3 Experiment & Result discussion

3.1 Dataset and Implementation

We use Breast invasive carcinoma (BRCA) and Colon adenocarcinoma (COAD)
datasets from The Cancer Genome Atlas Program (TCGA) to validate the ro-
bustness and generalization capability of our method. We follow the CLAM [18]
methodology to segment foreground tissue regions at 40x magnification. The
regions are divided into 192x192 resolution patches, serving as high-resolution
images for all experiments. Additionally, patches at 5x, 10x, and 20x magnifica-
tions are chosen as low-resolution data to simulate downscaling by factors of 8x,
4x, and 2x, respectively. For all experiments, we randomly select 2000 patches
for the training set and 100 patches as test samples. Regarding the structural
configuration of MiHATP, it is specified that there are six M-RHAG modules
for each branch. Within each branch, six M-HAT modules are incorporated.
Within the Multi-HAT module, α and β were set to 0.01. We employed the
Adam optimizer with an initial learning rate of 0.0001 divided by ten every 50000
iterations. The weight of the contrastive loss, λ, is set to 0.01. The temperature
parameter τ is set to 0.05.

3.2 Experimental Results

The Results of Comparison Experiments The results of super-resolution
image under different methods are reported in Table 1. Under each experimental
condition, five non-intersecting sets of test images were collected. The final result
was the average of the outcomes from five experiments. On the COAD and
BRCA datasets, MiHATP exhibits significant improvements compared to state-
of-the-art (SOTA) algorithms, particularly at an x8 resolution where MiHATP
demonstrates over a 3% increase in PSNR. At x4 and x2 resolutions, MiHATP
also shows improvements ranging from 0.90% to 1.38%. Moreover, MiHATP
demonstrates superior performance in SSIM, especially noticeable at higher
magnification factors, despite the limited dataset. Some Examples are shown
in Fig. 2. The results show that MiHATP can effectively depict image details
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Table 1: Results on the COAD and BRCA datasets(x% shows improvement over
best baseline (SwinIR) and x% shows the decrease in performance compared to
MiHATP).

Method
COAD Dataset

x2 x4 x8
PSNR(db) SSIM PSNR(db) SSIM PSNR(db) SSIM

SRCNN [6] 29.1065↓ 9.96% 0.8989↓ 4.64% 23.1145↓ 12.98% 0.7356↓ 6.10% 19.0812↓ 12.16% 0.4342↓ 16.42%
LDM [22] 30.4564↓ 5.81% 0.9010↓ 4.41% 23.9633↓ 9.79% 0.7424↓ 5.23% 19.2209↓ 11.52% 0.4391↓ 15.48%
IDM [8] 30.9378↓ 4.32% 0.9102↓ 3.44% 24.1479↓ 9.09% 0.7469↓ 4.66% 19.5464↓ 10.02% 0.4532↓ 12.76%

ResShift [27] 31.4319↓ 2.79% 0.9282↓ 1.53% 24.3835↓ 8.21% 0.7452↓ 4.88% 19.8880↓ 8.45% 0.4826↓ 7.10%
SHISRCNet [26] 31.8732↓ 1.43% 0.9388↓ 0.40% 25.2459↓ 4.96% 0.7636↓ 2.53% 20.6238↓ 5.06% 0.4811↓ 7.39%

SwinIR [16] 31.9037↓ 1.34% 0.9377↓ 0.52% 26.2012↓ 1.36% 0.7745↓ 1.14% 20.8928↓ 3.82% 0.4923↓ 5.24%

MiHATP (ours) 32.3356↑ 1.35% 0.9426↑ 0.52% 26.5634↑ 1.38% 0.7834↑ 1.15% 21.7234↑ 3.98% 0.5195↑ 5.53%

Method
BRCA Dataset

x2 x4 x8
PSNR(db) SSIM PSNR(db) SSIM PSNR(db) SSIM

SRCNN [6] 32.5606↓ 8.09% 0.9264↓ 3.67% 27.2737↓ 9.62% 0.8415↓ 6.53% 21.9137↓ 11.42% 0.6151↓ 17.78%
LDM [22] 33.0968↓ 6.57% 0.9327↓ 3.02% 27.9129↓ 7.51% 0.8431↓ 6.35% 22.1959↓ 10.28% 0.6383↓ 14.68%
IDM [8] 33.6549↓ 5.00% 0.9423↓ 2.02% 28.1479↓ 6.73% 0.8546↓ 5.08% 22.3688↓ 9.58% 0.6874↓ 8.11%

ResShift [27] 34.2976↓ 3.18% 0.9412↓ 2.13% 28.9399↓ 4.10% 0.8574↓ 4.77% 22.5324↓ 8.92% 0.7032↓ 6.00%
SHISRCNet [26] 34.8323↓ 1.67% 0.9528↓ 0.93% 29.7133↓ 1.54% 0.8709↓ 3.27% 23.3348↓ 5.68% 0.7112↓ 4.93%

SwinIR [16] 35.1081↓ 0.90% 0.9600↓ 0.18% 29.8595↓ 1.05% 0.8870↓ 1.47% 23.8881↓ 3.44% 0.7296↓ 2.47%

MiHATP (ours) 35.4256↑ 0.90% 0.9617↑ 0.18% 30.1778↑ 1.05% 0.9003↑ 1.50% 24.7399↑ 3.60% 0.7481↑ 2.54%

Table 2: Results on cell segmentation and phenotypes.
Metric Scale Bicubic SRCNN LDM IDM ResShift SHISRCNet SwinIR MiHATP

Dice

x2 0.8138 0.8150 0.8184 0.8205 0.8234 0.8241 0.8252 0.8323↑0.71%
x4 0.8043 0.8050 0.8056 0.8070 0.8072 0.8089 0.8097 0.8177↑0.80%
x8 0.7833 0.7867 0.7904 0.7917 0.7932 0.7951 0.8013 0.8056↑0.62%
HR 0.8394

ACC

x2 0.9246 0.9260 0.9276 0.9294 0.9301 0.9311 0.9308 0.9330↑0.19%
x4 0.9148 0.9149 0.9160 0.9173 0.9205 0.9217 0.9221 0.9264↑0.43%
x8 0.9086 0.9088 0.9096 0.9114 0.9145 0.9181 0.9188 0.9204↑0.16%
HR 0.9377

in super-resolution pathological data and accurately represent tissue structures
across various super-resolution magnifications.

The Results of Downstream Task Validation Experiments We apply
the super-resolution network trained on the COAD dataset directly to assess its
effectiveness in downstream tasks on the colorectal nuclear segmentation and
phenotypes (CoNSeP) dataset without further training. The pretrained Hover-
Net [9] serves as our baseline network for downstream testing. We conduct tasks
for magnification factors of x2, x4, and x8. To visually demonstrate the potential
performance upper and lower bounds of tasks at different scales, we also perform
performance tests on high-resolution images and upsampled images directly
obtained through Bicubic interpolation. As shown in Table 2, MiHATP obtains
the optimal Dice and ACC scores in all experimental settings, demonstrating that
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Fig. 2: The x4 and x8 super-resolution results on COAD and BRCA pathological
image patches achieved by different methods.

ID

Module

PSNR(dB) SSIM
M-HAB

CL

IS ITP RTP

1 26.4159 0.7564

2 " 26.4295 0.7604

3 " " " 26.4899 0.7714

4 " " " 26.5012 0.7719

6 " " " 26.4423 0.7611

7 " " " 26.5329 0.7812

8 " " " " 26.5634 0.7834

Table 3: The ablation study results for
key components of MiHATP.
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Fig. 3: The ablation study for different
hyper-parameters of τ, β, λ.

MiHATP effectively captures cellular morphological information in low-resolution
patches.

Ablation Study As shown in Table 3, We conduct ablation studies on the
COAD datasets x4 scale super-resolution task. Where IS stands for image space
contrastive learning, ITP stands for irreversible transformation pool, and RTP
stands for reversible transformation pool. If RTP or ITP is not present, the
similarity between the training data and the positive or negative example set is
set to 1, respectively. If without IS, contrast learning is performed only in the
feature space by default. The experimental results indicate that compared to
the baseline (Exp 1), when utilizing the contrastive learning strategy based on
transformation pooling (Exp 7) and M-HAB (Exp 2) separately, the PSNR can be
improved by 0.117 dB and 0.014 dB respectively, while the SSIM can be increased
by 2.48% and 0.40% respectively. When both modules (Exp 8) are applied
simultaneously, PSNR and SSIM increase by 0.1475dB and 2.70% compared
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to baseline. Additionally, we investigate the impact of crucial hyperparameters
in MiHATP, and the results are shown in Fig.3. The hyperparameter settings
selected by MiHATP achieve optimal super-resolution performance.

4 Conclusion

This paper introduces MiHATP, a super-resolution approach for pathological
images. Our method utilizes a Multi-Hybrid fusion attention strategy, enabling
the capture of rich information within variable receptive fields, both short and
long distances. Moreover, our approach combines sample constructions using
reversible and irreversible transformation pools in both image and feature spaces,
forming a contrastive learning framework.
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