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Abstract. Many multi-modal tumor segmentation methods have been
proposed to localize diseased areas from the brain images, facilitating
the intelligence of diagnosis. However, existing studies commonly ig-
nore the relationship between multiple categories in brain tumor seg-
mentation, leading to irrational tumor area distribution in the predic-
tive results. To address this issue, this work proposes a Multi-category
Region-guided Graph Reasoning Network, which models the dependency
between multiple categories using a Transformer-based Multi-category
Interaction Module (TMIM), thus enabling more accurate subregion lo-
calization of brain tumors. To improve the recognition of tumors’ blurred
boundaries, a Region-guided Reasoning Module is also incorporated into
the network, which captures semantic relationships between regions and
contours via graph reasoning. In addition, we introduce a shared cross-
attention encoder in the feature extraction stage to facilitate the compre-
hensive utilization of multi-modal information. Experimental results on
the BraTS2019 and BraTS2020 datasets demonstrate that our method
outperforms the current state-of-the-art methods.
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1 Introduction

Brain tumors are among the most common cancers worldwide, with gliomas
being the most prevalent malignant brain tumors, varying in degrees of inva-
siveness. Precise and automatic segmentation of biomedical images would assist
radiologists in reducing labor-intensive and time-consuming tasks. However, it
remains challenging to achieve high-precision segmentation results|23|. To obtain
comprehensive information necessary for accurate segmentation, multi-modal
MRI scans with different imaging parameters are typically required in brain
tumor segmentation. Common modalities include Fluid Attenuated Inversion
Recovery (FLAIR), T1-weighted (T1), contrast-enhanced T1-weighted (T1ce),
and T2-weighted (T2) imaging. Images from different modalities capture differ-
ent pathological information and can effectively complement each other. They
play a crucial role in segmenting various types of brain tumor regions such as

* Corresponding author.



2 Dongzhe Li Baoyao Yang Weide Zhan and Xiaochen He

edema (ED), necrosis and non-enhancing tumor (NCR/NET), and enhancing
tumor (ET).

In recent years, deep learning has largely advanced the field of computer-
aided diagnosis (CAD), especially medical image segmentation. Methods based
on deep learning have become mainstream in this field. The most popular ap-
proaches utilize convolutional neural networks (CNNs) geared towards semantic
segmentation, such as Fully Convolutional Networks (FCN)[22], U-Net[9], and
V-Net[3] to segment brain tumors. The major issue in applying these methods
in multi-modal segmentation is how to integrate information from multi-modal
medical images effectively.

In most existing brain tumor segmentation methods, multi-modal MRI scans
are simply stacked as inputs to the model for semantic segmentation. This may
lead to insufficient utilization of multi-modal information. Recently, Some multi-
modal fusion methods have been proposed. Zhang et al.[7| directly integrate
modalities during the input stage. Wang et al.[5] utilize densely connected mul-
tiple modal branches to learn complementary information, and Zhou et al.[13]
propose independent encoders for four modalities. While these methods can
learn the complementary information between modalities, they ignore explor-
ing the semantic relationship between multi-categories in brain tumor segmen-
tation. Moreover, multi-modal fusion may introduce challenges such as blurred
boundaries and inaccurate localization of tumor areas, as the same area of multi-
category tumor subregions exhibits diversity across different modalities. In fact,
contours are strongly structurally correlated with multi-category subregions: The
precise localization and differentiation between multi-category subregions will
enhance the clarity of contours. On the other hand, contour can make the bound-
ary information of multiple category areas more accurate. Therefore, integrating
multi-category and contour information can assist the localization of tumor re-
gions and alleviate the problem of edge blurring.

This paper divides brain tumor segmentation into two branches: regions-
based and contours-based. It fully utilizes multi-modal and multi-category in-
formation through feature extraction and graph reasoning stages. In the fea-
ture extraction stage, a cross-attention encoder effectively fuses multi-modal
features, and a Contour Attention Gate (CAQG) is proposed to highlight contour
information in brain tumor images. In the graph reasoning stage, multi-category
graphs are built based on semantic relationships among subregions, and a Multi-
category Region-guided Graph Reasoning Network is developed to explore rela-
tionships between regions and contours. Transformer-based Multi-category In-
teraction Module (TMIM) is designed to learn semantic relationships among
subregions. Then, we utilize Graph Neural Networks for remote information
propagation and cross-domain feature updating to optimize contour features.
The model is learned by a combined loss function that integrates constraints on
both region and contour, promoting comprehensive learning across both aspects.

The main contributions in this paper are summarized as:
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Fig.1: An Overview of the proposed Multi-category Graph Reasoning Network.

1. We propose a Multi-category Region-guided Graph Reasoning Network
that leverages multi-modal and multi-category information in brain tu-
mor images and introduces contour information to assist segmentation.

2. We develop a Transformer-based Multi-Category Interaction Module
(TMIM) to capture the multi-category feature relationships among
brain tumor subregions of NCT, ET, and ED.

3. We conduct a series of experiments on the BraTS2019 and BraTS2020
datasets, whose results show that the proposed method achieves promis-
ing performance on multi-categories brain tumor segmentation.

2 Method

2.1 Overview

An overview of the proposed method is illustrated in Fig. 1. Given an input
MRI scan X € RE*H*XW “where C represents the modality number of brain
images. Firstly, it passes through a Multi-task Feature Extraction Network to
obtain feature representations for contours and regions. Subsequently, the fea-
tures are input into a Region-guided Graph Reasoning Network to examine
the relationship between regions and contours. The region’s features are pro-
cessed through a transformer-based Multi-category Interaction Module (TMIM)
to learn the multi-category relationships among brain tumor subregions and
generate enhanced representations highlighting tumor subregion features. En-
hanced region and contour features are projected into graph nodes. The Multi-
category graphs capture relationships between tumor subregions, while region-
guided graph learning facilitates feature transfer from regions to contours, re-
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sulting in a contour graph that incorporates region information. Finally, graph
nodes are projected back into the original coordinate space.

2.2 Multi-task Feature Extraction Network

According to expertise [6], there exists a strong structural correlation between
paired brain tumor modalities. The information between different modalities is
diverse and complementary based on their imaging principles. We divide the
input modalities X € RE*H*W into two pairs along the channel dimension:
XTLTlce gpnd XT2FLAIR ¢ RCO/2XxHXW  The Multi-task Feature Extraction
Network adopts an encoder-decoder architecture with a shared encoder. Subse-
quently, two independent segmentation branches generate region predictions F,
and contours prediction F.

Cross-Attention Encoder. In order to adaptively capture interactions be-
tween modalities, In multi-modality brain tumor images, the information be-
tween different modalities is complementary and correlated. To adaptively cap-
ture interactions between modalities, cross-attention encoders are embedded
into the feature extraction process. By processing modalities in pairs, closely
related modalities are processed with the same branches, while the complemen-
tary modalities are associated using cross-attention. This design not only reduces
the computational cost associated with multiple branches but also facilitates the
efficient learning of multi-modal information.

Contour Attention Gate. During convolution, image or signal contour fea-
tures may be lost or blurred as kernels typically detect local patterns rather
than contours directly. Inspired by the information reweighing ability of atten-
tion gates [8], this paper incorporates Contour Attention Gate (CAG) modules
into skip connections to extract multi-scale contour features during contour seg-
mentation. Details of CAG is illustrated in Figure 1. CAG selects the feature
map of the current layer z! and the gating signal ¢! of the next layer decoder
as inputs. After passing through the contour detector, features focused on con-
tour information are obtained. Then, they are element-wise added to obtain the
updated features:

Fint = Wg(xl * écontour) + Wg(gl * Cchontour) (1>
where * is the convolution operation and Clrontour is the contour detection op-
224y2

erator, C'wmow = ﬁ67 22 i.e. o denotes the standard deviation and (x,y)
is spatial coordinates. The features W, and W, are linear transformations

We adopt multi-dimensional attention coefficients [11] to selectively focus on
the contours of brain tumor sub-regions at multiple scales.The multi-dimensional
attention coefficient formula is as follows:

a; = 02T (01 (Fine + b)) + by) (2)

where o1 (-) is the Sigmoid activation function and o3(-) is the ReLU activation
function.. 1) denotes linear transformations and by, b, are bias terms.
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2.3 Multi-category Region-guided Graph Reasoning Network

A multi-category Region-guided Graph Reasoning Network is designed to in-
vestigate the semantic associations between diverse categories, facilitating the
identification of tumor locations and guiding contour learning. By utilizing a
graph-based strategy to explicitly model the relationship between contour fea-
tures and region features, we achieve propagation of knowledge from region to
contour over long distances to improve the definition of contours in the contour-
based branch. Then, leveraging Graph Convolutional Networks for relational
reasoning on graphs enhances the expression capability of both regional features
and contours, as well as multi-category discrimination.

Transformer-based Multi-category Interaction Module. After obtain-
ing the multi-modal feature map F,., we pass F, through convolutional layers,
softmax, and segmentation operations to obtain separate tumor sub-regions rep-
resentations XNOR XED XET and concatenate them:

F, :concat[Fr@XNCR,FTQXED,FTQXET] (3)

where ©® is dot production,concat denotes concatenation operation. Then, stan-
dard transformer encoder structure[12] is applied as a transformer unit to build
long-term relationships between tumor subregions. The structure of the trans-
former unit is shown in Figure 1.

Region-guided Graph Convolution Network. Considering that learning
from regions can provide additional supervision for contour segmentation tasks,
we construct graphs separately for regions and contours, then guide contour
learning with the knowledge obtained by region. Following [15], we employ
graph projection operations to project features of regions and contours onto
graph nodes. Subsequently, we compute inter-graph dependencies using atten-
tion mechanisms to propagate node information from regions to contours.The
updated contour graph éguide can be formulated as:

éguide - W(LN(X;JT ® Xk) ® XZ) + Gcontour (4)

where X, X, X, are query graph, key graph value graph obtained by multi-
layer perceptrons (MLPs)[1]. LN(-) denotes the layer normalization and W is
the weighting parameter. ® acts as a matrix product. Subsequently, we perform
graph convolutions (GCN) [4] on both the region graph and the contour graph

GN'guide = X(ATGguideW) (5>

X is a non-linear activation function,and AT denotes the graph adjacent matrices
for Gguide. Finally, the graph is reprojected to the original coordinate space by
utilizing assignment matrix M:

Fcontour = Méguide + Fc (6)

The reprojection of the region graph G¢gion is similar as above.
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2.4 Loss Function

We optimize the proposed network with three losses: Liegions Lcontour, 30d Lgnal-
During the feature extraction stage, we introduced Liegion and Leontour t0 respec-
tively learn specific features for contour branches and region branches, guiding
the training of the Multi-task Segmentation Network. L;egion is employed by a
combination of soft dice loss and cross-entropy loss (BCE) [24]. Leontour €nhances
segmentation accuracy by leveraging both boundary detail from edge loss [16]
and contour overlap from dice loss, mathematically,

Lregion = Z (05 . LBCE + LDice) (7)

Lcontour =0.5- LCRF + LDice (8)

whe In the stage of graph reasoning, we combine Lcontour @nd Lyegion to en-
courage mutual learning between regions and contours and to maintain common
features between positional features, formulated as,

Lﬁnal = L/region + A L/contour (9>

where L’ region and L contour are the losses of predictions regarding region and
contour with the same definitions as Lyegion and Leontour above. A denotes a
hyperparameter controlling the balance between L’ region and L contour-

3 Experiment

3.1 Data and Implementation Details

We select the BraTS 2019 and BraTS 2020 datasets [21] as the brain glioma
segmentation benchmarks. The two datasets comprise 335 and 369 annotated
brain tumor samples, respectively. Each subject in the datasets contains four
modalities: T1, Tlce, T2, and Flair, which have undergone skull-stripping, re-
sampling, and co-registration processes. The dimensions of each MRI volume are
155 x 240 x 240, and we perform data preprocessing involving common z-score
normalization techniques, with each modality scan being sliced and cropped into
sizes of 160 x 160. Each dataset is divided into 80% for model training and 20%
for testing. Our model is trained end-to-end. We employ the Adam optimizer
to update model parameters with a learning rate of 104. We assess the model’s
performance using two widely adopted metrics in medical image segmentation:
the Dice score and the 95% Hausdorft distance (HD).

3.2 Comparison with SOTA Methods

We conduct a comparative analysis of our network with five state-of-the-art
(SOTA) segmentation methods. These include two approaches that emphasize
multi-modal feature fusion (SF-Net[17] and ACM-Net[18]), as well as three recent
Transformer-based methods (Nestedformer[19], TransBTS[14], EoFormer|20]),
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Table 1: Result comparison of brain tumor segmentation methods on BraTS2019
Model Dice(%) T HD95(mm) |

ET | TC | WT | Ave | ET | TC | WT | Ave
TransBTS[14] [80.86 |81.19 |89.35|83.80(5.642|6.048 | 4.332|5.460
Nestedformer[19]|82.11 | 86.42 |91.18| 86.57 | 5.534 | 5.906 | 5.317 | 5.585
SF-Net[17] 80.08|82.33|88.61|83.67|4.787|7.440 | 7.288 | 6.505
ACM-Net[18] |80.63|87.15|88.08 |85.28 | 4.564 | 7.774 | 3.862 | 5.400
Eoformer[20] |82.94|86.83|90.39|86.72(4.053|5.843|5.822|5.239
Ours 83.23|89.10(90.44 |87.59|5.110 | 7.523 [3.775| 5.469

Table 2: Result comparison of brain tumor segmentation methods on BraTS2020
Dice(%) T HD95(mm) |
ET | TC | WT | Ave| ET | TC | WT | Ave
TransBTS[14] |80.89|83.25|90.10 | 84.08|5.873 | 6.875 |4.876 | 5.824
Nestedformer[19]|82.85 | 86.48 |91.20| 86.84 | 5.721 | 6.115| 4.598 | 5.528
SF-Net[17] 81.10(83.84 |89.01 | 84.65|4.305| 7.661 | 7.720 | 6.562
ACM-Net[18] |82.42|87.75(90.08|86.75|4.492|7.624 | 3.956 | 5.375
Eoformer[20] |83.54|87.12|90.87|87.17|5.911|6.041|3.852|5.268
Ours 84.38(89.21|90.77 |88.12(5.413 | 7.759 |3.844|5.672

Model

with one of them focusing on edge-oriented segmentation. As depicted in Table 1,
our method demonstrates Dice scores of 83.23%, 89.10%, and 90.44% for the
ET, TC, and WT regions, respectively, in the BraTS2019 dataset. Through the
incorporation of multi-category interaction and Region-guided Graph Reasoning
Modules, our method achieves the highest Dice scores for the Enhance Tumor
and Tumor Core regions, indicating its efficacy in capturing the interrelationships
among brain tumor subregions. Similarly, as illustrated in Table 2, our method
continues to outperform others by achieving the highest Dice scores in the ET
and TC regions in the BraTS 2020 dataset. Although the Dice scores of our
method in the WT region slightly trail behind Nestedformer and Eoformer, the
difference from the highest score is acceptable, and our results notably surpass
the others.

It is worth noting that the average Dice score of our proposed method is
the highest among all methods. Figure 2 visually shows the visual segmentation
results of our method on BraTS2019. It can be observed that we can accurately
segment the contours of brain tumors and the positions of sub-regions. Based
on our results, the model exhibits outstanding performance in handling multi-
category dependencies and achieving precise delineation of brain tumor contours.
This success is due to its adept integration of constraints on both region and
contour, showcasing its effectiveness in accurate tumor segmentation.
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Fig.2: The visual results on BraTS2019. Green, yellow and red colors indicate
regions of ED, ET and NCR, respectively.

3.3 Ablation Study

This section uses the standard Unet [9] as the baseline model and then adds
different components one by one to validate their effect. Specifically, we mainly
compare the performance of the four models: (1) Unet, (2) Unet+CAG, (3)
Unet+GCN, and (4) Unet+CAG+GCN. We can see that each of the above
components leads to some improvements in the segmentation results. Compar-
ing (1) with (2), the Unet+CAG model improves segmentation accuracy for all
classes, with significant enhancements observed in ET and TC segmentation,
along with a minor improvement in WT segmentation, which validates that the
contour information extracted by CAG can serve as complementary information
for brain tumor segmentation, thereby enhancing performance. Comparing (1)
with (3), The Unet+GCN model slightly outperforms the Unet model overall.
Significant improvements are seen in ET and TC segmentation, with marginal
improvements in WT, confirming that performing graph inference can improve
segmentation effectiveness. By comparing (4) with (2) and (3), it is evident that
combining region and contour branches for region-guided graph reasoning en-
hances the segmentation performance for all three categories of brain tumors.
Comparing the results of the whole model with those of (4), the proposed model
surpasses the other four models in all classes, achieving a notably higher aver-
age Dice score of 87.59% compared to the alternative models. It concludes that
the TMIM module can effectively learn multi-class relationships and transmit
knowledge from the region to the contour graph.

4 Conclusion

This paper introduces a novel approach leveraging graph learning to capture
semantic relationships between multi-categories from region and contour and as-
pects for brain tumor segmentation. A TMIM is proposed to accurately identify
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Table 3: Ablation study of critical components

Dice(%)
Model ET | TC |[WT | Ave
(1) Unet 79.10|81.00| 87.93 | 82.67

(2) Unet+CAG  [80.73|83.23|89.62|84.52
(3) Unet+GCN  |80.93[85.09(88.12 |84.71
(4) Unet+CAG+GCN|81.69|88.12[90.11 | 86.64
Proposed 83.23(89.10(90.44(87.59

and locate brain tumor subregions, addressing the challenge of contour overlap.
In addition, cross-attention encoders together with CAG, are introduced to en-
hance the utilization of contour information, which has shown effectiveness in
reducing boundary errors and providing complementary information for subre-
gion localization. The quantitative and qualitative results on the BraTS 2019
and BraTS 2020 datasets demonstrate the effectiveness of our method
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