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Abstract. Multiphase CT angiography (mCTA) has become an impor-
tant diagnostic tool for acute ischemic stroke (AIS), offering insights
into occlusion sites and collateral circulation. However, its broader ap-
plication is hindered by the need for specialized interpretation, contrast-
ing with the intuitive nature of CT perfusion (CTP). In this work, we
propose a novel diffusion based generative model to generate CTP-like
perfusion maps, enhancing AIS diagnosis in resource-limited settings.
Unlike traditional diffusion models that restore images by predicting
the added noise, our approach uses a masked residual diffusion prob-
abilistic model (MRDPM) to recover the residuals between the pre-
dicted and target image within brain regions of interests for more de-
tailed generation. To target denoising efforts on relevant regions, noise
is selectively added into the brain area only during diffusion. Further-
more, a Multi-scale Asymmetry Prior module and a Brain Region-Aware
Network are proposed to incorporate anatomical prior information into
the MRDPM to generate finer details while ensuring consistency. Ex-
perimental evaluations with 514 patient images demonstrate that our
proposed method is able to generate high quality CTP-like perfusion
maps, outperforming several other generative models regarding the met-
rics of MAE, LPIPS, SSIM, and PSNR. The code is publicly available at
https://github.com/UniversalCAI/MRDPM-with-RAP.

Keywords: Acute ischemic stroke · CT perfusion imaging · Multi-phase
CT angiography· Diffusion models · Medical image synthesis

1 Introduction

Multiphase CT angiography (mCTA) emerges as a critical advancement in the
diagnostic landscape for acute ischemic stroke (AIS), primarily utilized to assess
occlusions and collateral status for patients with AIS [10,16]. However, its clinical
adoption has been hampered by the need for specialized interpretative expertise,
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contrasting with CTP’s more intuitive evaluation process. This challenge has
spurred efforts to leverage mCTA in generating perfusion maps, e.g., CBF, CBV,
and Tmax, similar to those provided by CTP, aiming to optimize stroke care in
the settings constrained by imaging resources.

To tackle the challenges in interpreting mCTA, several methods have been
introduced, including traditional deconvolution algorithms [4,5], random forest
techniques [11], and convolutional neural network (CNN)-based approaches [17].
These existing methods, however, suffer from noise and the low temporal resolu-
tion characteristic of mCTA, resulting in generated maps of diminished quality
and missing the intricate patterns typically observed in CTP images. Despite
these advancements, a notable gap persists in rendering mCTA as intuitive and
detail-rich as CTP, accentuating the need for continued innovation in this area.

Image generation models, e.g., generative adversarial networks (GANs) [18,7],
have revolutionized the field of cross-modality medical image synthesis [6,22,1],
offering new avenues for enhancing mCTA’s interpretability. More recently, dif-
fusion model has established new performance benchmarks in image synthe-
sis [14,13]. Compared to GANs, diffusion model demonstrates more stable train-
ing processes and a reduced likelihood of losing data distribution [2,21]. However,
the application of diffusion model to medical imaging faces unique challenges,
including the complex structure of medical images and the critical need for preci-
sion in image translation [8,12,9]. In order to address these challenges, we propose
a novel approach that harnesses the ability of diffusion models for the synthesis
of CTP perfusion images from mCTA data.

Our key technical contributions are summarized as follows: 1) a novel masked
residual diffusion model architecture is proposed, which surpasses current diffu-
sion models in generating finer image details while ensuring consistency; 2) we
introduce a multi-scale asymmetry prior module, which enhances the guidance
for the diffusion model by integrating and fusing latent space features derived
from the initial predictor; 3) additionally, a brain region-aware network is de-
signed for improving feature extraction from anatomical areas within the brain.

To our knowledge, this paper represents the first study to introduce diffu-
sion model to synthesize CTP-like maps from multiphase CTA. This integrated
approach is able to bridge the gap in interpretability between mCTA and CTP,
providing a more intuitive and detailed method for diagnosing AIS.

2 Methodology

Given a dataset {(x, y)}Ni=1, where x ∈ R1×H×W and y ∈ R4×H×W denote
the output and input samples, respectively. The output x has one channel for
CTP images, and the input y has 4 channels composed of one non-contrast CT
(NCCT, typically acquired prior to CTA at baseline) and three temporal phases
of mCTA. Our aim is to efficiently generate CTP-like maps x , i.e., CBF, CBV,
and Tmax, based on mCTA images y.

To overcome the challenges posed by the inherent randomness of Gaussian
noise in existing diffusion models for medical image generation, we introduce
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an integrated framework. This framework implements a residual-based diffu-
sion model to ensure stable outputs with two tailor-made modules: the Multi-
scale Asymmetry Prior (MAP) module and the Brain Region-Aware Network
(BRAN). Our objective is to refine the precision of noise prediction while con-
centrating on the brain and its pertinent areas, thus elevating both the quality
and efficiency of image generation. The framework of our proposed method is
illustrated in Fig. 1.

Fig. 1. Overview of our proposed Masked Residual Diffusion Model framework

2.1 Masked Residual Diffusion Model

The randomness increases in the reverse process of diffusion models, even with
a good initial condition, due to the stochastic nature of Gaussian noise. There-
fore, a residual-based diffusion model [19] is proposed to stabilize the outputs in
the deterministic inference. Unlike conventional diffusion models, the proposed
residual diffusion model restores the residual between the ground truth xgt and
an initial mapping xinit = Iθ(y) (Fig. 1). The predictor Iθ(y) is pre-trained to en-
sure the next diffusion model can be steadily trained. The pre-training objective
Linit is defined as the mean absolute error between the xinit and the xgt :

Linit = E ∥xgt − xinit∥1 (1)

During the training phase, Iθ(y) is fine-tuned within the diffusion model to
improve adaptability and ensure consistent output quality. The diffusion model,
represented as fθ, aims to estimate noise ϵ̂ in the reverse process:

ϵ̂ = fθ(xt, ᾱ, y, Ω) (2)

Sampling: xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I)

Residual: x0 = xgt − xinit
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where ᾱt =
∏t

i=1 αi, αi denotes variance schedule, Ω denotes conditions.
In contrast to the traditional diffusion process, our approach introduces noise

selectively into the foreground regions during the forward diffusion phase, specif-
ically designed for brain images where the background outside of the brain is
typically non-essential. This technique refines the denoising process by focus-
ing on the vital task of restoring information in areas of interest, rather than
indiscriminately applying noise across the entire image. We employ a binary
foreground mask, MFG, representing the brain, which can be readily derived
using morphological operations from mCTA images. Subsequently, we refine the
diffusion loss function Ldiff by computing the mean square error (MSE) between
the actual noise ϵ and its estimated counterpart ϵ̂ with this computation being
exclusively restricted to the regions delineated by MFG (Eq. (3)). This modifica-
tion ensures that only the foreground areas are considered in the loss calculation,
enhancing the specificity and efficiency of our denoising process.

Ldiff = E ∥MFG · (ϵ− ϵ̂)∥22 (3)

Despite the fact that fine-tuning Iθ during training does not require the
computation of gradients [19], it is essential to preserve the stability of Iθ. This
preservation helps in preventing the deterioration of the pre-trained Iθ and en-
sures the stability of the diffusion model’s objectives. Consequently, we introduce
an additional loss function weighted by λ, similar to the approach outlined in
Eq.(1), to provide supervision for Iθ. λ is empirically set as 0.1. This adjustment
redefines the training phase objective as follows:

L = Ldiff + λLinit, λ > 0 (4)

2.2 Multi-scale Asymmetry Prior

Radiologists’ interpretations heavily rely on their prior knowledge, encompassing
anatomy and contextual understanding of medical images. Experts can spot ab-
normalities by comparisons between the ischemic and contralateral hemispheres
within specific anatomical regions. Inspired by this fact, a functional module Cθ

is proposed to extract the latent space features Zi and Zf from the initial pre-
dictors Iθ and the denoiser fθ, respectively. The fused outputs, called Multi-scale
Asymmetry Prior (MAP), are subsequently used as additional condition for pre-
dicting the noise in the diffusion model. The module structure Cθ is illustrated
in Fig. 2, and the process is defined as below:

Ω := Cθ(Zi, Zf ) (5)

Specifically, ẑlI ∈ ZI represents a replicated feature from the l-th layer of the
initial predictor. We employ a sampling module δl to process ẑlI at each layer.
To augment the model’s awareness of asymmetrical horizontal patterns, we ap-
ply a mirroring operation to ẑlI , generating a horizontally flipped counterpart,
labeled as zli. Utilizing a pyramid feature fusion approach, we ensure these fea-
tures contribute not just within their original layers but are also integrated into
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Fig. 2. Structure of Cθ

higher layers through average pooling. This strategy bolsters the model’s abil-
ity to refine features across levels, ensuring a comprehensive multi-scale feature
representation. This process can be formulated as follows:

zli = δl
(
flip

(
ẑlI
)
, ẑlI

)
(6)

z1→l
i = concat

(
zli, avgpool

(
z1→l−1
i

))
(7)

The conditional sampling module, denoted as ϕl, integrates the diffusion
model’s layer-specific feature zlf ∈ Zf with the aggregated multi-layer feature
z1→l
i through ϕl sampling. This feature is then added back to the original input

feature, forming the enhanced feature zlcond returned to the diffusion model:

zlcond = zlf + ϕl
(
zlf , z

1→l
i

)
(8)

Zcond = {z1cond, z
2
cond, . . . , z

l
cond} (9)

This methodology ensures that each layer’s features are both refined and ex-
panded upon, providing a rich, multi-layered feature set for the model.

2.3 Brain Region-Aware network

Brain imaging highlights unique cerebral structures, yet traditional convolutional
modules, designed for direct mapping, struggle to leverage this anatomical struc-
ture information. Addressing this, we introduce a Brain Region-Aware Network
(BRAN) module as the initial predictor Iθ [3] illustrated in Fig. 3. BRAN im-
proves mCTA to CTP mapping accuracy by integrating features more effectively
across brain sub-regions through an improved U-shape architecture [7].

Specifically, our method roughly segments brain images into four regions,
considered as background, gray matter, white matter, and ventricle. It is im-
plemented by a guided Mask GM which divides the spatial domain into D = 4
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Fig. 3. Architecture of a Layer in BRAN

subregions. Each subregion is with a unique set of filters W . The GM is dynami-
cally generated from the input feature map P ∈ RU×V×C via a 1×1 convolution,
producing a D-channel feature map F = Conv1×1(P ), F ∈ RU×V×D , where U ,
V , and C represent the height, width, and number of channels, respectively [3].
Each channel of F represents one sub-region, and the GM at each point (u, v) is
determined by the channel with the highest value. This process is described as
follows:

GMu,v = argmax
(
F 0
u,v, F

1
u,v, · · · , FD−1

u,v

)
(10)

St = {(u, v)|GM(u, v) = d}, d ∈ [0, . . . , D − 1] (11)

To enhance the mapping capability of the BRAN module, we augment the orig-
inal filter strategy by incorporating two sets of filters with varying depths for
each sub-region, denoted as W i = [W i

0, · · · ,W i
D−1] and W j = [W j

0 , · · · ,W
j
D−1].

The filters W i
d and W j

d , corresponding to region Sd, are convolved with the input
feature P within their specific sub-regions. This is followed by an aggregation
step to generate the final feature map Q, as illustrated by:

Wd = W i
d +W j

d , d ∈ [0, . . . , D − 1] (12)

Q =
D−1∑
d=0

(u,v)∈Sd

Pu,v ∗Wd (13)

where Wd represents the sum of W i
d and W j

d . The process of acquiring W i
d and

W j
d is depicted in Fig. 3.

3 Experiments and Results

Datasets and Pre-processing. Our study involved imaging data from 514 AIS
patients, each having undergone mCTA and CTP images as reference standard
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Fig. 4. Comparative Results of CTP Map Generation

prior to treatment. We split the dataset into 411 images for training and 103 for
testing. To prepare for neural network analysis, we standardized preprocessing:
this included aligning modalities, axial slicing, and adjusting images (cropping,
rotation, translation) for brain centralization and skull stripping to remove non-
brain elements. Images were resized to 256× 256 pixels at 0.625mm× 0.625mm
spacing. We normalized CBF to [0,200], CBV to [0,20], and Tmax to [0,30].
Hyper-parameters Settings. The learning rate remains fixed for the initial
100 epochs and then linearly declines from 5 × 10−5 to 5 × 10−7 over the sub-
sequent 100 epochs, with a batch size of 4 throughout. Noise variances linearly
spanned from β1 = 10−6 to βT = 0.01, with T = 1000 diffusion steps. The model
was trained on a single NVIDIA RTX A100 GPU with 40 GB memory using the
Adam optimizer in PyTorch. An Exponential Moving Average (EMA) over the
model parameters with a decay rate of 0.9999 was employed.
Evaluation Metrics. Four quantitative metrics, i.e., Mean Absolute Error
(MAE), Learned Perceptual Image Patch Similarity (LPIPS), Structural Simi-
larity Index Measure(SSIM), and Peak Signal-to-Noise Ratio (PSNR), were used
for evaluations. Notably, LPIPS[20], as a deep learning derived perceptual metric,
canevaluate the generated images from a perspective of human visual perception.
Results. The quantitative and qualitative results are shown in Tab. 1 and Fig.4,
respectively. Our model demonstrated great performance in both structural con-
sistency and perceptual quality. We compared our approach with five advanced
image synthesis techniques: two GAN based methods of Pix2Pix [7] and Cycle-
GAN [23], and two diffusion model based methods of SR3 [15] and Palette [14],
with each method trained using its official settings for optimal performance. For
comparisons, the masked diffusion strategy, as elaborated in Section 2.1, was
applied to both SR3 and Palette. Results in the Tab.1 show that our method
surpasses other methods in both consistency and perceptual metrics.

An ablation study further dissected the impact of key model components on
the image generation process. Incrementally removing elements such as mask,
residual diffusion (Res), BRAN, and MAP allowed us to gauge their contribution
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to the model’s performance. An initial predictor based on the generator proposed
by Isola et al.[7] is applied for baseline comparison with BRAN. As evidenced by
the results in Tab. 2, each component played a vital role in enhancing the accu-
racy and quality of the synthesized images, with the full configuration yielding
the best performance.

Table 1. Quantitative results on different perfusion maps.

Parameters Methods MAE ↓ LPIPS ↓ SSIM ↑ PSNR ↑
Pix2Pix [7] 0.051 ± 0.024 0.198 ± 0.050 0.640 ± 0.133 20.2 ± 3.30

CycleGAN [23] 0.065 ± 0.032 0.218 ± 0.055 0.598 ± 0.146 18.2 ± 3.34

Tmax SR3 [15] 0.058 ± 0.036 0.207 ± 0.071 0.641 ± 0.143 19.8 ± 4.25

Palette [14] 0.051 ± 0.028 0.193 ± 0.057 0.648 ± 0.135 20.5 ± 3.85

Ours 0.047 ± 0.023 0.179 ± 0.051 0.649 ± 0.135 21.1 ± 3.57

Pix2Pix [7] 0.044 ± 0.019 0.208 ± 0.051 0.655 ± 0.120 20.2 ± 2.84

CycleGAN [23] 0.051 ± 0.024 0.220 ± 0.055 0.646 ± 0.123 19.4 ± 2.97

CBF SR3 [15] 0.044 ± 0.022 0.208 ± 0.059 0.667 ± 0.124 20.6 ± 3.20

Palette [14] 0.043 ± 0.020 0.203 ± 0.057 0.670 ± 0.121 20.7 ± 3.10

Ours 0.041 ± 0.018 0.192 ± 0.049 0.673 ± 0.116 21.0 ± 2.98

Pix2Pix [7] 0.050 ± 0.022 0.196 ± 0.051 0.655 ± 0.126 20.0 ± 2.86

CycleGAN [23] 0.057 ± 0.026 0.203 ± 0.056 0.640 ± 0.130 19.2 ± 2.90

CBV SR3 [15] 0.057 ± 0.035 0.207 ± 0.088 0.649 ± 0.149 19.7 ± 3.60

Palette [14] 0.053 ± 0.031 0.192 ± 0.071 0.660 ± 0.138 20.1 ± 3.42

Ours 0.046 ± 0.021 0.171 ± 0.049 0.668 ± 0.126 20.6 ± 2.88

Table 2. Ablation Study Results

Mask Res BRAN MAP MAE ↓ LPIPS ↓ SSIM ↑ PSNR ↑
× × × × 0.065 ± 0.035 0.268 ± 0.102 0.585 ± 0.142 18.9 ± 3.64

✓ × × × 0.051 ± 0.028 0.188 ± 0.057 0.640 ± 0.135 20.2 ± 3.85

✓ ✓ × × 0.050 ± 0.025 0.191 ± 0.052 0.641 ± 0.138 20.4 ± 3.51

✓ ✓ ✓ × 0.049 ± 0.023 0.189 ± 0.052 0.647 ± 0.136 20.7 ± 3.45

✓ ✓ ✓ ✓ 0.047 ± 0.023 0.180 ± 0.051 0.649 ± 0.135 21.1 ± 3.57

4 Discussion and Conclusion

Our work presents a clinically-applicable approach in medical imaging, specifi-
cally for CTP-like map generation from mCTA images. The proposed masked
residual diffusion probabilistic model, enhanced by foreground restriction masks
and residual diffusion, offering a blend of precision and detail. In addition, MAP
and BRAN are designed to address the specific challenges of medical image gen-
eration, ensuring the accurate reproduction of intricate cerebral structures and
perfusion patterns. The application of this model in clinical settings could greatly
augment diagnostic capabilities for AIS, providing high-quality CTP-like maps
from readily accessible mCTA images. This advancement is especially promising
for resource-limited settings, where access to advanced imaging technologies may
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be constrained. By delivering detailed perfusion maps that closely mimic those
produced by traditional CTP, our model not only bridges a critical gap in stroke
diagnostics but also enhances the potential for early and accurate intervention,
underscoring its clinical relevance and potential impact on patient care.
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