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Abstract. A global threshold (e.g., 0.5) is often applied to determine
which bounding boxes should be included in the final results for an ob-
ject detection task. A higher threshold reduces false positives but may
result in missing a significant portion of true positives. A lower thresh-
old can increase detection recall but may also result in more false posi-
tives. Because of this, using a preset global threshold (e.g., 0.5) applied
to all the bounding box candidates may lead to suboptimal solutions.
In this paper, we propose a Test-time Self-guided Bounding-box Prop-
agation (TSBP) method, leveraging Earth Mover’s Distance (EMD) to
enhance object detection in histology images. TSBP utilizes bounding
boxes with high confidence to influence those with low confidence, lever-
aging visual similarities between them. This propagation mechanism en-
ables bounding boxes to be selected in a controllable, explainable, and
robust manner, which surpasses the effectiveness of using simple thresh-
olds and uncertainty calibration methods. Importantly, TSBP does not
necessitate additional labeled samples for model training or parameter es-
timation, unlike calibration methods. We conduct experiments on gland
detection and cell detection tasks in histology images. The results show
that our proposed TSBP significantly improves detection outcomes when
working in conjunction with state-of-the-art deep learning-based detec-
tion networks. Compared to other methods such as uncertainty calibra-
tion, TSBP yields more robust and accurate object detection predic-
tions while using no additional labeled samples. The code is available at
https://github.com/jwhgdeu/TSBP.

Keywords: Object Detection · Histology Images · Self-guided Detection
Refinement · Test-time Method

1 Introduction

Object detection methods enable automated localization and classification of key
objects in images, and play an important role in various areas such as medical
image analysis and disease diagnosis. In recent years, with the rapid development
of deep learning, object detection has made significant improvements in the
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Fig. 1. Shown are examples of detected bounding boxes (b-boxes) with varying con-
fidence scores in two test images. The yellow arrows highlight how higher-confident
b-boxes influence lower confident b-boxes in TSBP based on visual similarities.

field of biomedical research, driving innovation in medical image diagnostics and
biomedical studies [3,4,13].

A confidence score of each detected bounding-box is often generated by a
detection model, which reflects the level of certainty that the detection is cor-
rect [5]. Fig. 1 showcases the predicted results of object detection models on two
histology images. Higher confidence thresholds (e.g., 0.90) can effectively reduce
false positives but lead to false negatives, while lower thresholds (e.g., 0.6) can
increase the recall rate at the expense of more false positives. During the de-
ployment (test-time) of an object detection model, using confidence thresholds
to determine which bounding-boxes to include is critical but fewer studies were
conducted in this aspect [19]. A common approach involves testing and evalu-
ating different thresholds on a validation set, followed by selecting the optimal
threshold as the deployment confidence threshold [21]. However, this approach
has two notable limitations. First, object detection tasks involve diverse objects
with varying categories, sizes, and shapes. Consequently, using a single threshold
may not effectively cater to all the objects. Second, estimating a threshold using
data inevitably incurs the data shift problem [14]. That is, when the test set ex-
hibits data shift with respect to the training and validation sets, the estimated
threshold can be ineffective for test samples.

Predictions with higher confidence scores are statistically more likely to be
correct than those with lower confidence scores. In this paper, we aim to utilize
bounding-box predictions with high confidence to rectify the bounding-box pre-
dictions with lower confidence. More specifically, we propose a new method called
Test-time Self-guided Bounding-box Propagation (TSBP). TSBP propagates in-
formation of bounding-boxes with high confidence to influence bounding-boxes
with lower confidence, with the goal of adjusting the class labels associated to
bounding-boxes with low prediction confidence. Our main contributions can be
summarized in the following three aspects.
– We explore a practical test-time task aimed at improving object detection

performance in histology images. We illustrate the efficacy of a test-time op-
timization procedure in refining predictions by leveraging visual similarities
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among test samples. Our findings underscore the potential benefits of this
approach in enhancing detection accuracy.

– To tackle this challenge, we introduce a novel and adaptable method termed
Test-time Self-guided Bounding-box Propagation (TSBP). TSBP employs an
iterative matching and selection process, leveraging high-confidence bounding-
boxes to refine low-confidence ones by exploiting their visual similarities. Un-
like conventional confidence calibration techniques, TSBP operates without
such requirements for label adjustment.

– Experiments, conducted on gland detection and cell detection tasks in histol-
ogy images, show that our TSBP method can substantially enhance detection
outcomes. Compared to known confidence calibration methods, TSBP leads
more robust and accurate object detection predictions.

2 Related Work

Our TSBP method is related to confidence calibration, as TSBP can be viewed
as a method for dynamically adjusting (or calibrating) the confidence score for
each prediction (bounding-box) of a model. The goal of confidence calibration is
to align the predicted confidences of a model with their actual accuracy [7]. Stud-
ies have shown that deep neural networks (DNNs) tend to make overconfident
predictions [16], leading to inaccurate confidence estimation. Post-processing cal-
ibration, which requires parameter estimation on a validation set, is the most
widely-used approach for confidence calibration, and such methods include his-
togram binning [22], Bayesian binning [15], Platt scaling [17], and Beta calibra-
tion [10]. In [12], calibration results were improved by considering both confi-
dence scores and bounding-box information of object detection models. In [6],
histogram binning calibration was modified under the condition of bounding-box
sizes.

In traditional classification tasks, the maximum class probability (MCP) is
commonly used as the confidence score [9]. This approach assigns the highest
softmax output as the confidence score, which means that even incorrect pre-
dictions can result in high confidence values. Considering that MCP can lead
to the overlap of confidence scores between correct and incorrect predictions, a
confidence module called ConfidNet [2] was introduced into the original classi-
fication model to output confidence predictions that are closer to the true class
probability (TCP). To suppress low-quality prediction boxes, CPSS-FAT [20]
multiplies a consistent location quality estimation (CLQE) score by a class score
as the confidence score.

3 Methodology

Fig. 2 provides a high-level overview of the proposed method. We utilize a trained
object detection model (e.g., DiffusionDet [1]) on a set of test images, denoted
as X = x1, x2, . . . , xn. For each image xi ∈ R3×H×W , we obtain a collection
of bounding-boxes boxi,k = ui,k, vi,k, wi,k, hi,k, ci,k, si,k, k = 1, 2, . . . , zi. As the
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Fig. 2. Overview of Test-time Self-guided Bounding-box Propagation (TSBP).

number of generated bounding-boxes may vary for each image during infer-
ence, we use zi to represent the count of bounding-boxes produced for image
xi. Here, (ui,k, vi,k, wi,k, hi,k) indicates the positional attributes of the corre-
sponding bounding-box: (ui,k, vi,k) denotes the top-left corner coordinates, while
(wi,k, hi,k) represent its width and height, respectively. ci,k denotes the category
label of the bounding-box, while si,k represents its confidence score, ranging from
0 to 1. A high value of si,k indicates the model’s strong confidence in the cate-
gory label assignment, whereas a low value suggests being uncertain. Below, we
describe our proposed method for refining the label assignment of the bounding-
boxes, utilizing the higher-confidence bounding-boxes to influence those with
lower confidence.

3.1 Initialization

In the subsequent matching process, we need to compare the feature similarity
between bounding-boxes. Therefore, we introduce an additional feature infor-
mation feati,k for each bounding-box boxi,k. feati,k is obtained by cropping the
image patch inside the bounding-box boxi,k at the corresponding position on
the original image xi, and then applying a feature extractor, e.g., ResNet-50 [8],
to the cropped image patch. We denote feature extractor as π, and then the
feature information feati,k is obtained by feati,k = π(xi[vi,k : (vi,k + hi,k), ui,k :
(ui,k+wi,k)]). TSBP takes all the bounding-boxes as its input. The task of TSBP
is to reassign class categories to those bounding-boxes with low confidence scores.

For simplicity, suppose there are two class categories, denoted as c1 and
c2. We set confidence thresholds, sc1 and sc2. For bounding-boxes boxi,k with
ci,k = c1 and confidence scores si,k > sc1, we consider them as high-confident
(HF) c1 bounding-boxes. Similarly, for bounding-boxes boxi,k with ci,k = c2
and confidence scores si,k > sc2, we consider them as high-confident (HF) c2
bounding-boxes. The found HF c1 and c2 bounding-boxes are set as the initial
confirmed c1 and c2 bounding-boxes. We then select a set of representative
bounding-boxes from HF c1 and c2 bounding-boxes for the following Multi-
Round EMD Matching step. To achieve more efficient and effective matching
performance, we use a classic K-means algorithm (the number K of clusters
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is set as 25 by default). All the bounding-boxes not added to the confirmed
bounding-box set are considered as candidate bounding-boxes.

To ensure the reliability of the subsequent multi-round EMD matching and
bounding-box propagation, we proceed to compute distance constraints for each
class category. For every HF c1 bounding-box, we compute the shortest Eu-
clidean distance between this bounding-box and the other HF c1 bounding-boxes.
This process is repeated for all HF c1 bounding-boxes, and then the average of
the found shortest distances is computed to establish the distance constraint for
class category c1, denoted as Dc1

max. Similarly, we execute the same procedure
for HF c2 bounding-boxes to obtain Dc2

max. Both Dc1
max and Dc2

max will be applied
in the initial stage of the multi-round EMD matching.

3.2 Multi-Round EMD Matching and Bounding-Box Propagation

The multi-round bounding-box propagation comprises two stages. In the first
stage, propagation is carried out with stricter constraints when admitting newly
confirmed bounding-boxes (via utilizing the above obtained Dc1

max and Dc2
max).

This is done to ensure that the bounding-boxes added during this early stage
are more likely to have correct label assignments. In the second stage, these
constraints are relaxed to allow propagation to occur across a wider range of
candidate bounding-boxes.

In each round of propagation, suppose there are a candidate bounding-boxes
and m confirmed bounding-boxes. Among these confirmed bounding-boxes, t are
of class category c1 and the rest, m − t, are of class category c2. The input to
Earth Mover’s Distance (EMD) consists of two signatures: P = p1, p2, . . . , pa
and Q = q1, q2, . . . , qt, qt+1, . . . , qm, where P represents the candidate bounding-
boxes and Q represents the confirmed bounding-boxes. Specifically, Q comprises
t confirmed c1 boxes and m− t confirmed c2 boxes.

The distance between pi and qj is denoted as Di,j , reflecting the cost of
matching a candidate bounding-box pi with a confirmed box qj . Di,j is computed
using the Euclidean distance between the features of pi and qj (features obtained
in Section 3.1). The matching flow between pi and qj is denoted by fi,j , with a
potential value of either 0 or 1. The matching optimization goal is:

min
f

∑
1≤i≤a

∑
1≤j≤m

fi,jDi,j , (1)

subject to ∑
1≤i≤a

fi,j ≤ 1, 1 ≤ j ≤ m, (2)

∑
1≤j≤m

fi,j ≤ 1, 1 ≤ i ≤ a, (3)

∑
1≤i≤a

∑
1≤j≤m

fi,j = min(a,m), (4)

fi,j ∈
{
0, 1

}
, 1 ≤ i ≤ a, 1 ≤ j ≤ m. (5)
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Equation (2) indicates that a confirmed bounding-box (c1 or c2) can be
matched with at most one candidate bounding-box. Equation (3) indicates that
a candidate bounding-box can be matched with at most one of the confirmed
bounding-boxes. When the matching flow fi,j is 1, it means candidate bounding-
box pi has been successfully matched with confirmed bounding-box qj .

In the first stage of propagation, for each confirmed c1 bounding-box asso-
ciated with qj , where 1 ≤ j ≤ t, we identify pi∗ such that fi∗,j = 1. If Di∗,j is
smaller than the distance constraint Dc1

max (obtained in Section 3.1), we include
the corresponding candidate bounding-box pi∗ in the confirmed c1 bounding-box
set. The same procedure is followed for c2 bounding-boxes associated with qj ,
where t < j ≤ m. The confirmed box set Q is then updated to a new state
with the newly added c1 and c2 bounding-boxes, while the remaining candidate
bounding-boxes proceed to the next round of EMD matching (with updated P ).

The second stage of propagation starts when no new bounding-boxes were
added to the confirmed bounding-box sets for both c1 and c2 categories in the
last round of propagation. Consequently, the Dc1

max and Dc2
max constraints are

relaxed to allow more bounding-boxes to be added to the confirmed sets, that
is, any matched pairs found in the EMD matching are used for adding the
candidate bounding-boxes to the confirmed bounding-box sets. Specifically, for
each confirmed c1 bounding-box associated with qj , where 1 ≤ j ≤ t, we find
pi∗ such that fi∗,j = 1, and then add the corresponding candidate bounding-box
pi∗ to the confirmed c1 bounding-box set. The same procedure is applied for c2
bounding-boxes associated with qj , where t < j ≤ m.

The termination condition for multiple rounds of bounding-box propagation
occurs when the number of candidate bounding-boxes in P becomes 0. At this
point, we report all the bounding boxes in the confirmed bounding-box sets for
both c1 and c2 class categories to form the final detection results.

4 Experiments

4.1 Datasets

To validate the effectiveness of our proposed method on histology images, we con-
duct experiments on two datasets: GlaS [18] and MoNuSeg [11]. The GlaS dataset
consists of 165 images from 16 colon adenocarcinoma tissue slides. Among them,
85 images are used as the training set, 60 images are used as test set A, and 20
images are used as test set B. The MoNuSeg dataset contains different cell nuclei
from multiple organs. It includes 30 images (around 22,000 cells) for training and
14 images (around 7000 cells) for testing. The codes for all the experiments will
be made publicly available.

4.2 Main Results

We use the bounding-box predictions from a well-trained DiffusionDet [1] with
a confidence threshold set at 0.50 as the baseline. The inputs for the proposed
TSBP method are obtained from the same DiffusionDet model with all of its out-
put bounding-boxes (without applying the threshold). We compare TSBP with
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Table 1. F-scores (%) of the object detection on the GlaS and MoNuSeg datasets.

Dataset Baseline LC [17] BC [10] HB [22] TSBP
Labeled Samples Used 0% 20% 20% 20% 0%

GlaS testA 85.94 89.37 87.76 89.46 90.39
testB 69.18 72.63 66.67 68.35 73.45

MoNuSeg 83.23 81.66 82.85 83.35 83.60

Fig. 3. Top: Gland detection. Bottom: Cell nucleus detection. The red arrows indicate
additional true positives compared to the baseline results. The orange arrows indicate
additional false positives compared to the baseline results. The blue arrow indicates
missed detections compared to the baseline results.

a range of confidence calibration methods, Logic Calibration (LC) [17,12], Beta
Calibration (BC) [10,12], and Histogram Binning (HB) [22,12]1. Since calibration
methods require additional labeled data for parameter estimations, we allocate
20% of the samples in the test sets for parameter estimations for calibration
methods. We then perform model evaluation (including our method) using the
remaining 80% of samples in the test sets. For confidence calibration methods,
after calibration, we use a threshold set at 0.50 to decide which bounding-boxes
to include in their final detection outputs.

Table 1 summarizes the quantitative results of these methods, it can be ob-
served that TSBP achieves the highest F-scores on both the tested datasets.
Note that the calibration methods require additional labeled data for param-
eter estimation, while TSBP does not use such additional labeled samples. Fig. 3
shows some visual results of TSBP and the competing methods. Compared to
the baseline method, TSBP further increases the number of true positives. In
the first row of the visual results, our method has the highest number of addi-
tional true positives, and TSBP finds all the remaining missed detection boxes
compared to the other results. In the second row of the prediction images, the
LC method has the highest number of additional true positives (LC adds eight
true positives, while TSBP adds seven true positives), but, the LC method in-
troduces more false positives (LC adds four false positives, while TSBP adds one
false positives). In comparison, our method achieves a better balance between
missed detections and false positives.
1 https://github.com/EFS-OpenSource/calibration-framework
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Table 2. F-scores (%) with varying sc1 used in TSBP. For comparison, other methods
use sc1 as the threshold for selecting bounding-boxes.

threshold= 0.70 sc1= 0.70 threshold= 0.60 sc1 = 0.60
Baseline LC [17] HB [22] TSBP Baseline LC [17] HB [22] TSBP

Labeled Samples Used 0 20% 20% 0 0 20% 20% 0

GlaS testA 69.45 82.34 86.97 88.42 79.30 86.78 86.97 89.29
testB 51.13 68.35 65.36 72.73 59.31 70.66 68.35 72.73

MoNuSeg 72.62 79.97 80.59 80.83 80.59 83.20 83.35 83.76

Table 3. Resulting F-score (%) with varying K in the K-means step of TSBP.

GlaS testA 90.21 (K = 15) 90.11 (K = 20) 90.39 (K = 25) 89.75 (K = 30)
testB 73.45 (K = 5) 73.14 (K = 10) 72.94 (K = 20) 70.93 (K = 25)

MoNuSeg 83.52 (K = 15) 83.56 (K = 20) 83.60 (K = 25) 83.71 (K = 30)

Table 4. Error rates (%) of detection in different stages of TSBP.

GlaS MoNuSeg
26.79 (first satge) 37.25 (second stage) 50.66 (first stage) 53.44 (second stage)

4.3 Ablation and Additional Studies

On Initial Bounding-Box Selection. The parameter sc1 and sc2 determine
the inclusion criteria for bounding-boxes in the initial confirmed bounding-box
set. Here, we examine the impact of selecting the initial confidence threshold
sc1 on the detection performance. As shown in Table 2, TSBP yields better
detection results with a lower initial threshold (0.60). When a higher threshold
(0.70) is applied, the initial confirmed bounding-boxes may fail to encompass
the diversity of object appearances in the test samples, resulting in sub-optimal
performance of bounding-box propagation. Notably, compared to other methods
across varying confidence thresholds, TSBP consistently achieves better results.
K in the K-means step of TSBP. In Table 3, we show that different values
of K lead to performance fluctuations in a small range on the GlaS (testA) and
MoNuSeg datasets. Due to the smaller size of the testB in GlaS dataset, smaller
value of K gives better results.
Error rates in different stages of TSBP. Table 4 demonstrates that the
error rate in the first stage is lower than that in the second stage, consistent
with the method design, where early propagated samples are more likely to be
assigned correct labels.

5 Conclusion

The abundance of visual information in histology images can be leveraged dur-
ing test time to improve the performance of key object detection. This paper
introduced a novel perspective and approach to enhance object detection in his-
tology images in test time. Specifically, we designed a versatile matching-based
algorithm (TSBP) that leverages detections with high model confidence to influ-
ence detections with low model confidence, aiming to rectify potential errors and
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enhance the overall accuracy of the detection results. Experiments on two ob-
ject detection tasks in histology images showed the effectiveness of our proposed
method. Compared to confidence calibration methods, our method requires no
additional labeled data for model training and parameter estimation. Future
work will focus on developing a more automatic and robust procedure for form-
ing the initial condition of TSBP. Further studies of utilizing TSBP for test-time
model training can be considered an interesting future research target.
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