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Abstract. The diagnosis of Autism Spectrum Disorder (ASD) using
resting-state functional Magnetic Resonance Imaging (rs-fMRI) is com-
monly analyzed through functional connectivity (FC) between Regions of
Interest (ROIs) in the time domain. However, the time domain has limita-
tions in capturing global information. To overcome this problem, we pro-
pose a wavelet-based Transformer, BrainWaveNet, that leverages the fre-
quency domain and learns spatial-temporal information for rs-fMRI brain
diagnosis. Specifically, BrainWaveNet learns inter-relations between two
different frequency-based features (real and imaginary parts) by cross-
attention mechanisms, which allows for a deeper exploration of ASD. In
our experiments using the ABIDE dataset, we validated the superiority
of BrainWaveNet by comparing it with competing deep learning meth-
ods. Furthermore, we analyzed significant regions of ASD for neurological
interpretation.

Keywords: Resting-state fMRI · Autism Spectrum Disorder · Contin-
uous Wavelet Transform · Transformer

1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder exhibit-
ing deficiencies in social interaction, stereotypic behaviors, and hyper- or hypo-
reactivity to sensory input, where early diagnosis is pivotal for reducing symptom
severity through early intervention [17,8]. Resting-state functional magnetic res-
onance imaging (rs-fMRI) measures spontaneous blood oxygen level-dependent
(BOLD) signals reflecting active brain regions, facilitating neurological condition
diagnoses. Leveraging deep-learning methods enables analysis of rs-fMRI data,
including BOLD signals, functional connectivity (FC), and the amplitude of low-
frequency fluctuations (ALFF) of BOLD signals. Especially, frequency-based ap-
proaches (i.e.,fast Fourier transform; FFT, short-time Fourier transform; STFT)
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for fMRI-based diagnosis have gained prominence due to the cost and time effi-
ciency [11]. However, FFT has intrinsic limitations, including sensitivity to low
signal-to-noise ratios and difficulty in capturing rapidly changing non-stationary
signals [9]. In addition, its complexity increases in multivariate data, leading
to challenges in accurate predictions [23]. STFT enables the observation of fre-
quency components over time, but it is limited by a trade-off between frequency
and temporal resolution by selecting the window sizes [19].

To address the limitations mentioned above and enhance ASD diagnosis, we em-
ploy the continuous wavelet transform (CWT) to process rs-fMRI BOLD signals
into complex values, consisting of both real and imaginary parts. The CWT
captures both frequency and temporal information, using scalable wavelets, pro-
viding a multi-resolution analysis that allows for capturing various scales and
frequencies of signals [3]. This makes it more suitable for non-stationary signals
and better at capturing transient features in biological signals than FFT-based
methods [1]. The significance of each—real and imaginary parts—in fMRI stud-
ies is notable: most existing studies that investigate fMRI in the frequency do-
main, such as ALFF, use only the magnitude or real component. However, as
[20] demonstrated, analyzing the real and imaginary parts of the spectral fea-
tures can provide a more comprehensive understanding of the fMRI signal. This
motivates us to use both the real and imaginary parts derived from CWT. By
leveraging the frequency-wise temporal information from CWT and employing
a Transformer model for both the temporal (i.e., frequency-based) and spatial
(i.e., regions of interest; ROIs) axes, our proposed BrainWaveNet learns the com-
plex dynamics of signals. It captures detailed spatial-temporal representations
and regional relationships between ROIs, aiming to deepen our understanding
of the intricate relationships between temporal dynamics and spatial structures
among ROIs.

The main contributions of our work are as follows: (1) We introduce a novel
breakthrough in the fMRI domain by effectively leveraging the multi-scale spec-
tral features of raw data, utilizing both the real and imaginary parts of the
complex-valued features obtained from the CWT. (2) We propose BrainWaveNet1
, a CWT-based Transformer that effectively captures global temporal-to-spatial
patterns by applying the Transformer model to both temporal and spatial axes.
(3) Utilizing self-attention and cross-attention mechanisms, our model captures
not only the intra-correlations within the real and imaginary parts separately
but also explores their inter-relationships. (4) Our proposed model demonstrates
notable efficacy in our comparative analysis, indicating its potential as a valuable
tool alongside other baseline models.

2 Method

The BrainWaveNet architecture consists of a time-frequency representation, fre-
quency token encoding, WaveletTF block, and output module, as illustrated in
1 Our code is available at https://github.com/ku-milab/BrainWaveNet.

https://github.com/ku-milab/BrainWaveNet


BrainWaveNet 3

Fig. 1. An overview of BrainWaveNet: time-frequency representation, frequency token
encoding, WaveletTF block, and output module.

Fig. 1. The input BOLD signal passes through the time-frequency representation
to conduct the CWT and then passes through the residual convolutional block
to extract frequency-based representation. The frequency token encoding at-
taches the frequency class token (FCT ) and adds the positional information. The
WaveletTF block consists of a temporal Transformer encoder (TemporalEnc) and
a spatial Transformer encoder (SpatialEnc) hierarchically inspired by [18]. The
TemporalEnc learns the temporal embedding of each ROI at a local-level. Sub-
sequently, only a specific token, the FCT , is forwarded to the SpatialEnc, and
it learns the spatial embedding of relationships between ROIs at a global-level.
Lastly, the output module projects the values from the final WaveletTF block
for the classification task. We elaborate on the details of each module in the
following subsections.

2.1 Time-Frequency Representation

Coefficients are computed by convolving the original signal with the selected
mother wavelet ψ(t) over time and across various frequency scales using the
CWT. The CWT of a signal x(t) can be expressed as:

CWTψ(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt, (1)

where ∗ denotes complex conjugation, a and b are the scale and translation factor.
For the mother wavelet, the Morlet wavelet is preferred due to its Gaussian
shape in the frequency domain, which minimizes ripple effects that could be
misinterpreted as oscillations [3]. Additionally, the Morlet wavelet has an optimal
ratio between the Fourier period and wavelet scale, facilitating interpretation
in the frequency domain [21]. Therefore, we use the complex Morlet wavelet to
leverage its characteristics and utilize the real and imaginary parts of the spectral
features. The complex Morlet wavelet with center frequency fc and bandwidth
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fb can be expressed as a product of a Gaussian function g(t) and sinusoidal
functions as follows [16]:

ψ(t) =
1√
πfb

e
− t2

fb ej2πfct = g(t)[cos(2πfct) + j sin(2πfct)]. (2)

This implies that the real and imaginary parts of the results obtained through
CWT are coefficients obtained by scaling a cosine and sine function with Gaus-
sian distribution respectively.

The input data X ∈ CN×F×T is obtained by applying CWT to the raw data,
where N is the number of ROIs, F is the number of frequency bins, and T
is the number of time-steps. X is a complex value containing time-frequency
information, and we used both real (i.e., R(X ) ∈ RN×F×T ) and imaginary (i.e.,
I(X ) ∈ RN×F×T ) coefficients of the complex value. The real and imaginary
parts of X are passed into a residual convolutional block independently and
their respective outputs are merged into a complex value X ′ ∈ CN×F×T for
time-frequency representation.

2.2 Frequency Token Encoding

Frequency Class Token We introduce a learnable vector FCT (i.e., cn ∈
C1×T ) for each ROI to facilitate the extraction of spectral features, leveraging the
conventional classification token [5]. It is concatenated with the time-frequency
representation X′ as follows:

Zn = [cn;X
′
n] ∈ C(F+1)×T , (3)

where X′
n ∈ CF×T represents the n-th ROI in X ′, and [cn;X

′
n] denotes the

concatenation of cn and X′
n along the row dimension, resulting in Z = [Zn]

N
n=1.

The FCT not only serves to extract spectral information but also facilitates
communication between Transformers in the WaveletTF block.

Frequency Positional Encoding To learn the frequency sequences of differ-
ent bands for each ROI, we apply zero-initialized learnable frequency positional
encoding (i.e., FPE ∈ C(F+1)×T ). We add the FPE to Z:

Ẑn = Zn + FPE = [ĉn; X̂n] ∈ C(F+1)×T , (4)

where ĉn and X̂n denote the FCT and X′ after applying FPE, resulting in
Ẑ = [Ẑn]

N
n=1.

2.3 WaveletTF Block

Our proposed WaveletTF Block comprises two phases: (i) the TemporalEnc,
a local-level representation learning phase, performs self-attention on the data
containing time-frequency information along with Temporal Embedding (TE),
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and (ii) the SpatialEnc, a global-level representation learning phase, performs
cross-attention on the compact time-frequency information from TE outputs
with Spatial Embedding (SE).

Concretely, the output of the frequency token encoding module Ẑ (i.e., TE)
serves as an input for TemporalEnc, which comprises a stack of WaveletTF
blocks. Before Ẑ passes through the TemporalEnc, the learnable spatial em-
bedding El = [ϵl; el1; e

l
2; . . . ; e

l
N ] ∈ C(N+1)×D (i.e., SE), where l = {1, . . . , L}

denotes an index of a WaveletTF block, which includes a spatial class token
(SCT ) ϵl ∈ C1×D, is linearly projected and added to the FCT in Ẑ (i.e., ĉn).
At this stage, Ẑ is zero-padded to align its dimensions with El, resulting in the
FCT being Ĉ = [0; ĉ1; . . . ; ĉN ] ∈ C(N+1)×T , where 0 ∈ R1×T . This operation in
the l-th block for FCT can be described as follows:

C̃l = Ĉl + Linear(El) ∈ C(N+1)×T . (5)

Z̃ l with updated FCT (i.e., C̃l) is fed into the TemporalEnc. This process
distributes information along the ROIs axis, enabling the learning of spatial and
global features.

Temporal Transformer Encoder To independently learning the temporal
dependencies of the real and imaginary parts of the input through self-attention,
Z̃ l is divided into the real R(Z̃ l) and imaginary parts I(Z̃ l) and separately
passed through the TemporalEnc. The process for the real part in TemporalEnc
is as follows:

R(Ẑ l+1) = TemporalEncR(R(Z̃ l)) ∈ R(N+1)×(F+1)×T . (6)

The outputs of TemporalEnc from each real and imaginary part are merged
into a complex value (i.e., Ẑ l+1). Then, the FCT vector (i.e., Ĉl+1) from the
TemporalEnc output is linearly projected and added to the corresponding resid-
ual SE vector (i.e., El):

Ẽl = El + Linear(Ĉl+1) ∈ C(N+1)×D. (7)

Spatial Transformer Encoder To learn the spatial dynamics of the data
through cross-attention between learned real and imaginary parts of coefficients,
we propose SpatialEnc. SpatialEnc consists of two multi-head attention blocks
for real and imaginary parts. Specifically, the cross-attention mechanism is ap-
plied in both configurations: 1) with the imaginary part as the query and the
real part as the key and value, and 2) vice versa. By taking Ẽl as an input,
the cross-attention equation for the real part in SpatialEnc is as follows, with
a similar equation for the imaginary part by changing their roles of query (Q),
key (K), and value (V):

AttentionR(Ql
I ,K

l
R,V

l
R) = Softmax

(
Ql

I(K
l
R)T√
dk

)
Vl

R, (8)
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Table 1. Classification Results (mean ± standard deviation)

Method AUC ACC (%) SEN (%) SPC (%)
BrainNetCNN [12] 0.6907±0.01 64.36±1.19 53.40±3.79 75.32±2.31
BrainNetTF [10] 0.7141±0.02 66.80±1.78 61.06±4.96 72.55±8.08

STAGIN (GARO) [13] 0.5886±0.07 57.23±5.69 57.02±11.62 57.45±7.41
STAGIN (SERO) [13] 0.5839±0.05 57.88±1.89 51.92±2.18 61.28±4.02

BolT [2] 0.6989±0.02 62.66±3.54 55.32±5.53 70.00±3.31
P w/o Imag 0.6411±0.06 60.43±5.17 59.36±15.39 61.49±14.02
P w/o Real 0.6371±0.04 58.83±4.23 43.62±17.14 74.04±9.26

P w/o Cross-attn 0.6668±0.02 62.45±2.24 59.79±4.28 65.11±5.29
BrainWaveNet(Ours) 0.7388±0.02 67.55±2.03 66.49±9.17 68.35±9.80

where Ql
I denotes the queries of I(Ẽl) ∈ R(N+1)×D, and Kl

R and Vl
R denote

the keys and values of R(Ẽl) ∈ R(N+1)×D respectively. The process for the real
part in SpatialEnc can be expressed as follows:

R(El+1) = SpatialEncR(I(Ẽl),R(Ẽl),R(Ẽl)) ∈ R(N+1)×D. (9)

The outputs of SpatialEnc from each real and imaginary part are then merged
into a complex value El+1 ∈ C(N+1)×D. This module not only captures the
relationship between real and imaginary parts but also learns the spatial depen-
dencies of tokens containing time-frequency information for each ROI.

2.4 Output Module

As mentioned earlier we utilize the SCT (i.e., ϵl ∈ C1×D), for classification tasks.
The final output EL+1 from a stack of WaveletTF Blocks, can be described as
follows:

EL+1 = {ϵL+1, eL+1
1 , eL+1

2 , . . . , eL+1
N }. (10)

The complex value ϵL+1 is divided into its imaginary and real parts, each with a
dimension of R1×D. These parts are then concatenated, resulting in a dimension
of R1×2D. This is then passed through a fully-connected layer, and the probabil-
ity result is obtained through a softmax layer. We utilize the cross-entropy loss
for training.

3 Experiments and Analysis

3.1 Dataset and Experimental Settings

Dataset We conducted our experiments on the publicly available Autism Brain
Imaging Data Exchange (ABIDE)-I [6] dataset, the rs-fMRI data collected from
17 international sites. Based on the given quality control scores, 897 subjects (414
with ASD and 483 with TC) from 1,112 subjects were selected. The dataset, pre-
processed by the Configurable Pipeline for the Analysis of Connectomes (CPAC)
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tool, underwent band-pass filtering (0.01− 0.1Hz) without global signal regres-
sion. The brain was parcellated using the Craddock 200 atlas [4]. Given the time
variability across sites, with volumes between 78 and 316, we standardized the
time size by cropping sequences to 78 volumes without overlapping. This uni-
form approach ensures consistency across participants, crucial for maintaining
comparability in analyses. CWT was performed using the PyWavelets library
[15], evenly dividing the frequency range of 0.01 − 0.1 Hz into five subbands
with corresponding scale factors. Additionally, we adjusted the CWT process
to account for the repetition time (TR) at each site by converting the TR to
the corresponding sampling frequency. This site-specific sampling frequency was
then used to scale the frequency components, ensuring accurate time-frequency
representation of the fMRI signals.

Implementation Details In the Frequency Token Encoding, the FCT and
FPE were initialized with zeros. The spatial embedding matrix El, excluding
the zero-initialized SCT , was randomly initialized with a dimension of D = 128.
We set the number of WaveletTF blocks to L = 2. TemporalEnc had 3 layers
with a model dimension of dt = 16, 4 heads, and a feed-forward dimension of
ht = 32. SpatialEnc had 1 layer with a model dimension of ds = 64, 8 heads,
and a feed-forward dimension of hs = 128. We used GELU for activation and
applied a dropout rate of 0.3 to the Transformer in WaveletTF blocks. We split
the dataset into 7 : 2 : 1 for training, validation, and test sets, and performed
5-fold cross-validation with a batch size of 32. Adam optimizer with an initial
learning rate of 3×10−5 and weight decay of 10−4 was used. Models were trained
for 20 epochs, and the highest area under the curve (AUC) on the validation set
was used for model selection. To assess performance, AUC, accuracy, sensitivity,
and specificity were employed.

3.2 Performance Comparison

We compared our model with four baseline models as shown in Table 1.: (i)
BrainNetCNN [12], a convolution-based deep neural network; (ii) BrainNetTF
[10], a Transformer-based model; (iii) STAGIN [13], a model that combines graph
and Transformer-based approaches for dynamic graph representation learning,
featuring spatio-temporal attention. It included two readout methods, graph-
attention readout (GARO) and squeeze-excitation readout (SERO); and (iv)
BoIT [2], a Transformer-based model, which employed fused window multi-head
self-attention. The overall data setting was the same as the proposed method.

3.3 Ablation studies

We ablated our BrainWaveNet in terms of complex-valued CWT and cross-
attention in SpatialEnc. To investigate the impact of utilizing both real and
imaginary parts through complex-valued CWT, we compared the performance
of the model without the imaginary part (P w/o Imag) and the model without
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Fig. 2. Overview of significant top-5 regions derived from the classification token for
both the real and imaginary parts of the complex values: Classification token for the
real part in the TC group (a) and ASD group (b), classification token for the imaginary
part in the TC group (c) and ASD group (d).

the real part (P w/o Real). Our model’s performance significantly decreased
when either the real or imaginary part was used alone. This suggested that us-
ing each part separately might not provide sufficient information. To analyze
the impact of cross-attention between the real and imaginary parts in Spatia-
lEnc, we compared the performance with a model (P w/o Cross-attn) where
self-attention was performed separately instead of cross-attention in SpatialEnc.
Our model with cross-attention had higher performance than the model without
cross-attention.

3.4 Neuroscientific Analysis

To analyze which region affected the classification, we used the SCT from the
highest AUC fold in our cross-validation of correctly classified subjects. We sep-
arately analyzed and compared the real and imaginary components for the ASD
and TC groups. The top 5 of the 200 ROIs were selected to highlight the most
significant regions. The meaningful regions for classification included (a) left
precuneus (PCUN.L), left cerebellum Crus2 (CRBLCrus2.L), right middle cin-
gulate gyrus (DCG.R), right lingual gyrus (LING.R), and right fusiform gyrus
(FFG.R) for the real parts of TC; (b) PCUN.L, left medial frontal superior gyrus
(SFGmed.L), right fusiform gyrus (FFG.R), left precentral gyrus (PreCG.L), and
right superior temporal pole (TPOsup.R) for the real parts of ASD; (c) right
postcentral gyrus (PoCG.R), right inferior parietal lobule (IPL.R), PoCG.L,
PreCG.L, and right medial frontal superior gyrus (SFGmed.R) for the imaginary
parts of ASD; and (d) PreCG.L, PoCG.L, PoCG.R, left frontal inferior triangu-
laris (IFGtriang.L), and right medial frontal superior gyrus (SFGmed.R) for the
imaginary parts of TC. These regions were identified as meaningful biomarkers
based on preliminary ASD research, and they were related to cognitive functions
such as social communication, impairments, and emotion processing [7,14,22].
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4 Conclusion

In this paper, we propose BrainWaveNet, a novel frequency-based model that
captures information of brain activation levels and the temporal dynamics be-
tween regions from fMRI data through the CWT. This work represents a break-
through application of the CWT in the domain of fMRI analysis. In our exper-
iments with the ABIDE dataset, BrainWaveNet demonstrated superior perfor-
mance in classifying ASD when compared to existing methods. Moreover, we
investigated regions related to ASD for neuroscientific interpretation. Future re-
search will extend the scope of the analysis to encompass diverse time points
and atlases.
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