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Abstract. Magnetic Resonance Imaging (MRI) is a widely used non-
invasive medical imaging technique that provides excellent contrast for
soft tissues, making it invaluable for diagnosis and intervention. Acquir-
ing multiple contrast images is often desirable for comprehensive evalua-
tion and precise disease diagnosis. However, due to technical limitations,
patient-related issues, and medical conditions, obtaining all desired MRI
contrasts is not always feasible. Cross-contrast MRI synthesis can po-
tentially address this challenge by generating target contrasts based on
existing source contrasts. In this work, we propose Contrast Represen-
tation Learning (CRL), which explores the changes in MRI contrast by
modifying MR sequences. Unlike generative models that treat image gen-
eration as an end-to-end cross-domain mapping, CRL aims to uncover
the complex relationships between contrasts by embracing the interplay
of imaging parameters within this space. By doing so, CRL enhances
the fidelity and realism of synthesized MR images, providing a more ac-
curate representation of intricate details. Experimental results on the
Fast Spin Echo (FSE) sequence demonstrate the promising performance
and generalization capability of CRL, even with limited training data.
Moreover, CRL introduces a perspective of considering imaging param-
eters as implicit coordinates, shedding light on the underlying struc-
ture governing contrast variation in MR images. Our code is available at
https://github.com/xionghonglin/CRL_MICCAI_2024.

Keywords: Image translation · Cross-Contrast synthesis · MRI sequences.

1 Introduction

Magnetic Resonance Imaging (MRI) plays a crucial role in contemporary med-
ical diagnosis and intervention due to its non-invasive nature and excellent soft
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tissue contrast. By adjusting imaging parameters during the scanning process,
MR images depicting the same anatomical structure but with varying contrasts
can be acquired. In clinical scenarios, obtaining multiple contrast MR images
is often necessary for comprehensive evaluation of pathological conditions and
precise diagnoses. The fusion of images with different tissue contrasts facilitates
accurate treatment planning. However, challenges may arise during the MRI scan
that restrict the successful acquisition of all desired contrast images. Factors such
as the need to skip or shorten sequences for timely completion, technical limi-
tations (hardware or software issues), and patient-related issues, such as motion
artifacts, claustrophobia, or specific medical conditions, can impede the seamless
acquisition of MRI sequences. In some instances, medical conditions or physical
limitations may further restrict the acquisition of certain MRI contrasts.

To address these challenges, the synthesis of various contrast MRI has become
a significant area of interest for researchers. MR image synthesis involves gen-
erating a “target” contrast image based on an existing “source” contrast image,
which is a cross-domain image translation problem. This process entails learning
the underlying relationship between the source and target contrasts, enabling
the generation of realistic target contrasts that correspond to the sources. Syn-
thesizing target contrasts aids clinicians and researchers in obtaining a more
comprehensive understanding of anatomical structures or pathologies, particu-
larly for tasks requiring all contrasts as inputs in automatic multi-modal image
analysis. The field of MR image synthesis has witnessed substantial progress,
incorporating traditional methods like atlas-based approaches [11] and random
forest techniques [1, 6]. More recently, deep learning methods [2, 7, 8, 12, 16, 17]
have revolutionized MR image synthesis, leveraging powerful neural network ar-
chitectures and extensive training datasets to achieve remarkable results. The
prevailing approach in existing studies involves treating the generation of MR
images as an end-to-end cross-domain mapping. While this method is widely
considered universal and reasonable, it typically involves mutual mappings be-
tween two to four MRI contrasts [3, 9, 10, 14, 15]. Despite their prevalence, we
posit that directly using deep learning models to map between multiple discrete
domains may not accurately capture the intricate variations in contrast observed
in MR images. More importantly, these models are limited to translations be-
tween fixed contrasts and cannot synthesize MR images with unseen contrasts
that were not present in the training data.

Fig. 1. Demonstration of all the actually acquired MR sequences in our paper. Points
in the left show the sequence locations in the parameter space. Detailed imaging pa-
rameters are provided in Table 1.
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In this research, we introduce Contrast Representation Learning (CRL), an
approach that transcends the conventional paradigm of direct cross-domain map-
ping. Our hypothesis is rooted in the idea that MR images with different con-
trasts exist within a high-dimensional manifold. Within this manifold, subtle
nuances in contrast are not adequately represented by a direct mapping between
discrete domains. Instead, we propose that the intricate relationships between
contrasts are better understood through the exploration of a high-dimensional
space. In this latent space, the coordinates are implicitly expressed by the imag-
ing parameters of the scanning sequence, revealing a richer understanding of the
underlying structure governing contrast variation in MR images. To capture the
implicit relationship between imaging parameters and image contrast within the
network, we conducted a series of experiments on the Fast Spin Echo (FSE) se-
quence by varying parameters such as repetition time (TR), echo time (TE), and
inversion time (TI), resulting in a collection of diverse sequences. Through the
joint learning of multiple sequences, our model fits the high-dimensional man-
ifold formed by multiple sequence contrasts, as well as the coordinates of each
contrast expressed by imaging parameters.

CRL demonstrates its prowess by delivering impressive multi-contrast gener-
ation results across datasets, with training on just ten subjects. This underscores
the robust and adaptable nature of the CRL framework, enabling effective con-
trast generation even with a small subset of subjects. Notably, CRL can generate
contrast images formed by new imaging parameters that are not encountered
during training. This has the potential to provide clinical practitioners with
optimal contrast tailored to individual subjects.

2 Method

In this section, we first formulate the problem definition of our imaging parame-
ter based MR image synthesis. Then we describe our network and the proposed
contrast representation learning in details.

2.1 Problem Definition

Generally, the MRI signal intensity S from a SE (Spin Echo) sequence can be
approximated as:

SSE = f(k, t, p), (1)

where k represents parameters including scaling factor and spin density. t denotes
the T1 and T2 values of the scanning object, and p are the imaging parameters
(e.g., TR, TE, TI). Since our goal is to synthesize the target sequence from the
source sequence, and p controls the image contrast, we define a decoding function
fθ and an encoding function Eϕ with θ and ϕ being the parameters, respectively.
The relation between two contrast images Sx and Sy can be modeled as:

Sy = fθ(Eϕ(Sx), px, py), (2)
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Fig. 2. Overview of our method. The encoder (Eϕ) extracts the contrast representation
CRx from the source modality X. The source sequence parameters are mapped to
a high-dimensional vector and cross-attended with CRx to obtain common features
across sequences. Using these common features and the target sequence parameter
mapping, the target contrast representation CRy is obtained, from which the decoder
fθ synthesizes the target modality Y .

where px and py denote the imaging parameters of the source and target se-
quence, respectively. The encoding function takes the source image Sx and maps
it to its contrast representation in a high-dimensional space. To ease the in-
teraction between contrast representation and imaging parameters, we map the
three-dimensional sequence parameters (TR, TE, TI) into a high-dimensional
space using a mapping function fξ:

pξ = fξ(TR, TE, TI) (3)

Synthesizing the target sequence from a source sequence aims to learn the pa-
rameters of the encoder Eϕ, the decoder fθ, and the mapping function fξ.

2.2 Contrast Representation Learning

An overview of our method is illustrated in Fig. 2. Our model consists of an
encoder Eϕ, a decoder function fθ, and an embedding function fξ. The encoder
Eϕ maps the source sequence X to its contrast representation CRX . To generate
all the contrasts controlled by imaging parameters, we construct the common
features of all contrasts by performing cross-attention between CRX and the
high-dimensional embedding of px. The common features are then modulated
by the embedding of the target imaging parameter py to construct the target
contrast representation CRY , which is subsequently mapped to the target se-
quence Y by the decoder function fθ. The learning of the relationship between
contrast-related features and unrelated features is termed contrast representa-
tion learning.

Specifically, all sequences used for training are individually input into the
same encoder and encoded as contrast representations. We use a ResNet con-
sisting of 32-layer res-blocks as Eϕ. The 3-dimensional imaging parameters are
mapped to a 256-dimensional vector by a 4-layer MLP as fξ. Subsequently, all
features serve as queries, and the corresponding imaging parameter embeddings
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act as keys and values, participating in cross-attention and being mapped onto
the common features. We choose 8 heads for the multi-head attention in the
cross-attention. Following that, the common features randomly select imaging
parameters from another sequence as the condition and map it to the correspond-
ing contrast representation. The decoding function is then applied to obtain the
respective image. For the decoding function, we employ a 5-layer MLP with
dimensions [256, 256, 256, 256, 1].

To establish the common features, we enforce structural consistency con-
straints on the features of all sequences within the latent space. Specifically, for
the i-th and i′-th (input) sequences of a given subject, the common features
from them are Zi and Zi′ , respectively. The classical Structural Similarity Index
Measure (SSIM) is often used to gauge the similarity of two images [13]. We only
utilize the structural component in SSIM to enforce the structural consistency
between the two feature maps of Zi and Zi′ , while the luminance and contrast
components in SSIM are not used. The structural consistency loss function is
formulated as:

Ls = −
∑
i̸=i′

SSIMs(Zi,Zi′), (4)

where s indicates that only the structural component in SSIM calculation is
preserved.

In addition to the loss for building the common features, we need another loss
for the synthesized image. Let Ŷj denote the synthesized target sequence, and we
use the L1 loss to impose a similarity measure between Ŷj and the ground-truth
Yj . Therefore, we formulate our overall loss as:

Loverall =
∑
j

L1(Ŷj , Yj) + λLs, (5)

where λ is the weighting parameter balancing the two terms.

3 Experiments

3.1 Data Acquisition

The imaging data were acquired on a 3T United Imaging uMR890 MRI scanner
using a 64-channel head coil. Ten healthy subjects aged between 22 and 24 years,
including 7 males and 3 females, were included in the study after providing
informed consent.

Structural MRI with various contrasts was collected using a Fast Spin Echo
(FSE) sequence, with adjustments made to imaging parameters such as repeti-
tion time (TR), echo time (TE), and inversion time (TI). For each subject, we
gathered clinically popular structural MR images, including T1-FLAIR (denoted
as “1” in Fig. 1 and Table 1), T2-weighted (“7”), T2-FLAIR (“9”), and Proton
Density (PD) images (“5”). Additionally, we obtained further contrast images by
sampling parameters around these four structural images.
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Table 1. Imaging parameters of all sequences.

Seq 1 2 3 4 5 6 7 8 9
TR (ms) 2479 2479 6777 6777 8000 8000 8142 8000 8000
TE (ms) 9.62 10.42 10.42 62.52 10.42 39.92 104.2 99.98 98.78
TI (ms) 1055 0 0 0 0 0 0 1030 2025

The imaging protocol included 25 axial slices with a spacing of 0.64mm ×
0.64mm×6.5mm and a field of view (FOV) of 200mm×230mm. For T1-FLAIR
and T2-FLAIR sequences, the inversion time (TI) was empirically determined
following the rule:

TI = T1[ln 2− ln(1 + e−
(TR−TElast)

T1 )], (6)

where TElast is the last echo time. The detailed sequence information is shown
in Table 1.

For preprocessing, we conducted bias field correction and affine registration
within each subject using the Advanced Normalization Tools (ANTs) software
package. All images are applied min-max normalization to scale the intensity
range to [0, 1].

3.2 Implementation Details

We implemented our method using the PyTorch backend, and the subsequent
experiments were conducted on a server equipped with an Nvidia A100 GPU.
We used the Adam optimizer, with the learning rate set to 10−4 and decayed
by 0.5 every 200 epochs. The model was trained for 1000 epochs. All images
were resized to 192 × 192 to accommodate the competing method. We utilized
eight subjects as the training set and two subjects as the test set. The weighting
parameter λ for the loss function in Eq. (5) was set to 0.1.

Table 2. Performance of different methods on the test dataset.

Model PD to T2-FLAIR PD to T1-FLAIR PD to T2
PSNR SSIM% PSNR SSIM% PSNR SSIM%

pGAN [5] 26.05±1.28 90.47±1.30 24.50±0.80 83.01±0.80 29.47±0.64 92.58±1.04
PTNet [18] 21.24±1.77 81.24±1.04 21.16±1.30 77.14±1.18 26.07±0.52 93.00±0.59
ResVIT [4] 26.12±1.11 91.72±1.95 25.04±0.60 87.72±0.60 28.38±0.57 96.63±0.42
Ours 29.40±0.76 92.18±0.90 26.21±0.42 88.05±0.64 31.68±0.44 96.91±0.27

Model T2 to PD T2 to T1-FLAIR T2 to T2-FLAIR
PSNR SSIM% PSNR SSIM% PSNR SSIM%

pGAN [5] 30.08±0.60 92.81±1.64 27.18±1.29 89.68±1.40 24.90±0.52 84.64±1.25
PTNet [18] 27.24±0.73 93.07±0.89 21.90±0.83 82.59±0.67 22.00±0.62 79.87±1.13
ResVIT [4] 29.48±0.81 96.51±1.60 27.23±1.48 92.54±1.59 24.41±0.52 87.96±1.45
Ours 30.87±0.33 96.89±0.4 28.97±1.10 92.62±0.90 25.42±0.73 88.07±0.66
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3.3 Comparison with State-of-the-Art Methods

We compared our method with pGAN [5], PTNET [18], and ResViT [4] using
5-fold cross-validation on the dataset under six configurations of input-output
combinations: “5” (PD) to “1” (T1-FLAIR), “5” (PD) to “9” (T2-FLAIR), “5”
(PD) to “7” (T2), “7” (T2) to “5” (PD), “7” (T2) to “1” (T1-FLAIR), and “7”
(T2) to “9” (T2-FLAIR). All models were trained from scratch.

It is noteworthy that for all competing methods, a separate model was trained
for each respective task. In contrast, our approach involved training a single
model for all tasks. We employed the commonly used Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity Index Measure (SSIM) for quantitative
evaluation of the synthesis quality. The quantitative results are shown in Table
2. Qualitative results are shown in Fig. 3. The rows from top to bottom illustrate
the synthesized results from T2 to PD, T1-FLAIR, and T2-FLAIR, respectively.
From the synthesized images, we observe that our method is most comparable
to the ground truth, with fewer errors shown in the heatmaps. In summary, our
method can better maintain the anatomical structure of the original image over
other comparison models.

Fig. 3. Visualization of synthesized images and error maps of all methods.

3.4 Modulating Contrast across All Sequences

To validate the effectiveness of our method in modulating all contrasts, we eval-
uated our method with 5-fold cross-validation on the dataset under all configu-
rations of input-output combinations. Quantitative results are shown in Table 3.

It is worth noting that during training, we only utilized sequences with indices
[1, 2, 3, 5, 7, 8, 9], while sequences “4” and “6” were exclusively reserved for
validation purposes. Qualitative results are shown in Fig. 4. We selected sequence
“7” (T2) to exemplify the synthesis results of all other sequences. The first row
in the figure shows the ground-truth MR images for all sequences. The second
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Table 3. Performance of different input-output combinations in PSNR (dB). The rows
indicate the input sequences and the columns indicate the target output sequences. The
“*” indicates the sequences that are not seen during training.

Seq 1 2 3 4* 5 6* 7 8 9 Avg
1 - 28.18 24.89 24.45 24.75 19.74 24.45 24.89 24.75 24.08
2 29.54 - 26.01 26.43 24.98 19.45 27.08 22.37 24.47 24.52
3 27.64 27.65 - 27.88 30.75 22.99 28.80 24.42 24.64 25.58
4* 28.34 28.50 29.96 - 28.40 20.69 20.42 25.28 26.09 25.43
5 29.40 28.93 30.22 21.40 - 21.93 31.68 26.22 26.21 26.26
6* 23.71 19.64 20.92 22.37 - 19.48 17.83 19.37 20.64
7 28.97 28.43 32.90 29.23 30.87 25.97 - 26.65 25.42 27.77
8 33.41 22.04 27.74 20.54 20.21 20.00 35.89 - 24.52 25.60
9 29.98 26.33 24.89 25.17 25.29 22.12 24.56 24.50 - 24.86

row depicts the results obtained by using sequence “7” as input to synthesize
images for the other sequences. The results demonstrated the generalizability of
our approach, as the generated outcomes from sequence “7” remained consistent
with the ground truth, regardless of whether they appeared in the training data
or not.

Fig. 4. Visualization of synthesized images using sequence “7” (T2) as input.

4 Conclusion

In this study, we introduced Contrast Representation Learning (CRL), an ap-
proach for MR image synthesis that transcends the conventional paradigm of di-
rect cross-domain mapping. By exploring the high-dimensional manifold where
MR images reside and considering the interplay of imaging parameters, CRL
aims to capture the nuanced variations in contrast and enhance the fidelity of
synthesized MR images. Notably, by constructing the contrast manifold based on
imaging parameters, CRL demonstrates the capability to generate new contrast
images, offering promising prospects for clinical applications.
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