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Abstract. In radiation therapy (RT), the reliance on pre-treatment computed to-
mography (CT) images encounter challenges due to anatomical changes, neces-
sitating adaptive planning. Daily cone-beam CT (CBCT) imaging, pivotal for 
therapy adjustment, falls short in tissue density accuracy. To address this, our 
innovative approach integrates diffusion models for CT image generation, offer-
ing precise control over data synthesis. Leveraging a self-training method with 
knowledge distillation, we maximize CBCT data during therapy, complemented 
by sparse paired fan-beam CTs. This strategy, incorporated into state-of-the-art 
diffusion-based models, surpasses conventional methods like Pix2pix and Cy-
cleGAN. A meticulously curated dataset of 2800 paired CBCT and CT scans, 
supplemented by 4200 CBCT scans, undergoes preprocessing and teacher model 
training, including the Brownian Bridge Diffusion Model (BBDM). Pseudo-label 
CT images are generated, resulting in a dataset combining 5600 CT images with 
corresponding CBCT images. Thorough evaluation using MSE, SSIM, PSNR 
and LPIPS demonstrates superior performance against Pix2pix and CycleGAN. 
Our approach shows promise in generating high-quality CT images from CBCT 
scans in RT.  
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1 Introduction 

Sole reliance on pre-treatment CT scans risks under-dosing tumors and exposing organs 
at risk (OARs) to excessive radiation due to anatomical changes during treatment. 
Adaptive radiation therapy (ART) enhances patient outcomes by safeguarding healthy 
tissues and optimizing tumor doses, leveraging daily CBCT for real-time adaptability. 
Yet, CBCT's basic accuracy in tissue density and contrast falls short of CT standards 
[1]. Typically, planning CT (pCT) is adapted to CBCT anatomy using deformable im-
age registration (DIR) for accurate dose calculations, maintaining pCT's Hounsfield 
Unit (HU) precision. However, the anatomical fidelity of deformed pCT and potential 
inaccuracies from DIR, exacerbated by significant anatomical shifts and reduced con-
trast in soft tissue, pose challenges [2]. 

Efforts have been ongoing to generate pseudo-CT images from CBCT that are compa-
rable in quality to pCT images without the need for additional pCT acquisitions [14,15]. 
In typical radiation therapy delivery, as depicted in Figure 1, pCT is acquired only 2-3 
times for treatment planning and considering ART, whereas CBCT is captured daily. 
This results in a data imbalance, with only 2-3 pairs of pCT-CBCT data per patient 
against a larger volume of unpaired CBCT images. A primary option to address this 
issue is supervised learning, which trains models on paired CBCT and pseudo-CT data, 
but this method is limited to using only a fraction of the total data [11]. Alternatively, 
some studies have proposed using unsupervised domain-to-domain translation tech-
niques to synthesize pCT-like images from the abundant unpaired CBCT and pCT data 
[16]. However, these unsupervised learning approaches often yield suboptimal perfor-
mance in terms of tissue density accuracy due to the inherent limitations of unsuper-
vised learning methods. 

Figure 1. Illustration of real-world image acquisition settings for radiation 
therapy 



To address this issue, we propose a novel method utilizing a self-training framework 
with knowledge distillation for the CBCT to pCT conversion task. This approach max-
imizes the utilization of a small number of paired CBCT-pCT data and a large amount 
of CBCT data, surpassing both traditional supervised methods relying solely on paired 
data and unsupervised baselines utilizing unpaired data. We present and validate this 
new method through experiments. 
 The proposed method in this study facilitates real-time adjustments to radiation ther-
apy plans by providing high-quality CBCT images that closely match the patient's cur-
rent anatomical structure, accommodating changes in tumor size and position. 

2 Methodology 

2.1 Background of Brownian Bridge Diffusion Model (BBDM) 

The Brownian Bridge diffusion process [5] follows a distinct trajectory compared to 
the De-noising Diffusion Probabilistic Model [6] (DDPM). Instead of converging to a 
purely Gaussian noise distribution, it concludes by reaching the clean conditional input 
denoted as 'Q.' Employing similar notations as DDPM, where (P, Q) represents paired 
training data from the CBCT and CT domains. The forward diffusion process of the 
Brownian Bridge is defined as follows: 

 𝑞𝑞𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑃𝑃𝑡𝑡|𝑃𝑃0,𝑄𝑄) = 𝑁𝑁(𝑃𝑃𝑡𝑡; (1 − 𝑘𝑘𝑡𝑡)𝑃𝑃0 + 𝑘𝑘𝑡𝑡𝑄𝑄,𝜎𝜎𝑡𝑡𝐼𝐼) (1) 

 
Here, 𝑃𝑃0 = 𝑃𝑃, 𝑘𝑘𝑡𝑡 = 𝑡𝑡

𝑇𝑇
 (with T being the total steps of the diffusion process), and 𝜎𝜎𝑡𝑡 is 

the variance. The transition probability 𝑞𝑞𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑃𝑃𝑡𝑡|𝑃𝑃𝑡𝑡−1,𝑄𝑄) is derived as fol-
lows: 
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Here, 𝛿𝛿𝑡𝑡, 𝛿𝛿𝑡𝑡−1~N(0, I). As per Eq. (2), when the diffusion process reaches the des-
tination (t = T), 𝑘𝑘𝑡𝑡 = 1, and 𝑃𝑃𝑇𝑇 = 𝑄𝑄. The forward diffusion process establishes a con-
sistent mapping from domain CBCT to CT. 

In contrast to the reverse processes of conventional diffusion models, the typical 
procedure initiates with extracting pure noise from a Gaussian distribution and gradu-
ally eliminates noise to achieve a clean data distribution. Existing approaches involve 
incorporating the condition as an additional neural network input during the reverse 
diffusion process to model the conditional distribution. 



Conversely, the proposed Brownian Bridge process adopts a unique approach by 
directly commencing from the conditional input, where 𝑃𝑃𝑇𝑇 = 𝑄𝑄. Aligned with the fun-
damental concept of denoising diffusion methods, our method's reverse process aims to 
predict 𝑃𝑃𝑡𝑡−1 based on 𝑃𝑃𝑡𝑡: 

 𝑝𝑝𝜃𝜃(𝑃𝑃𝑡𝑡−1|𝑃𝑃𝑡𝑡 ,𝑄𝑄) = 𝑁𝑁(𝑃𝑃𝑡𝑡−1; 𝜇𝜇𝜃𝜃(𝑃𝑃𝑡𝑡 , 𝑡𝑡),𝜎𝜎𝑡𝑡� 𝐼𝐼) (3) 

Here, 𝜇𝜇𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡)represents the predicted mean value of noise, and, 𝜎𝜎𝑡𝑡�  denotes the 
noise variance at each step. Similar to DDPM, the mean value 𝜇𝜇𝜃𝜃(𝑃𝑃𝑡𝑡 , 𝑡𝑡) is learned 
through a neural network with parameters 𝜃𝜃 based on the maximum likelihood crite-
rion. While the variance, 𝜎𝜎𝑡𝑡�   does not undergo a learning process, its analytical form 
significantly influences high-quality image translation. 

Importantly, the reference image Q from the CT domain exclusively serves as the 
starting point 𝑃𝑃𝑇𝑇 = 𝑄𝑄 for the reverse diffusion. Notably, it is not utilized as a condi-
tional input in the prediction network 𝜇𝜇𝜃𝜃(𝑃𝑃𝑡𝑡 , 𝑡𝑡) at each step. 

Through this approach, it can exhibit superior performance in image-to-image trans-
lation compared to not only GAN-based approaches [3,4] with training instability and 
mode collapse issues but also other diffusion models designed for different conditional 
generation tasks. 

2.2 Knowledge distillation-based self-training  

Knowledge distillation [7] is a model compression technique that involves transferring 
insights from a complex teacher model to a simpler student model. The primary objec-
tive is to distill valuable knowledge and generalization capabilities embedded in the 
teacher model, delivering them to a more compact and computationally efficient stu-
dent model. Typically, a large and high-performing neural network serves as the teacher 
model, acting as the initial source of information. The student model, often smaller in 
size and computational complexity, is trained to replicate not only the output predic-
tions of the teacher model but also its internal representations and ac-quired knowledge. 

Figure 2. Overall workflow of the proposed method 



Proven to be particularly beneficial in resource-constrained scenarios, such as edge de-
vices or mobile applications, knowledge distillation contributes to enhanced model gen-
eralization and robustness.  
Knowledge distillation is also employed to enhance model performance. In the context 
of Self-training with a noisy student [8], knowledge distillation is utilized in scenarios 
where limited labeled data is available, while unlabeled data is abundant, aiming to 
improve model performance. In this approach, the teacher model is initially trained with 
labeled data, and subsequently, the student model is trained, incorporating the gener-
ated pseudo-labels from the teacher model. This recursive process, wherein the student 
model becomes a new teacher progressively, demonstrates the incremental enhance-
ment of model performance. Notably, introducing noise in various ways during the 
learning process enhances the resulting model's robustness. Motivated by this para-
digm, we apply a similar framework in a real clinical setting where CBCT-pCT pairs 
are limited, yet CBCT data is abundant, with the objective of improving performance. 

2.3 Preprocessing 

For preprocessing, alignment and cropping procedures were employed to ensure coher-
ence between the CBCT and CT volumes, with the CT slices adjusted to match the  
region of interest in the corresponding CBCT scans. Subsequently, the entire dataset 
underwent normalization to the standardized range of [-1, 1]. 

2.4 Proposed Framework 

In the initial phase, the BBDM served as the foundational teacher model, trained on 
1400 paired CBCT and CT scans. This teacher model was then employed to generate 
pseudo-labeled synthesized pCT images from 4200 unpaired CBCT images. In the sub-
sequent phase, a secondary student model was trained, initialized with the weights from  
the teacher model, leveraging both the 1400 paired and the 4200 pseudo-labeled da-
tasets. The performance of this secondary student model was benchmarked against var-
ious baseline models and the original teacher model to assess the effectiveness of our 
approach. Figure 2 graphically represents the entire training framework. 

2.5 Evaluation metrics 

We conducted a thorough evaluation encompassing normalized CT and CBCT images 
alongside the outputs generated by our proposed models. To quantitatively analyze the 
results, we employed three metrics: Mean Square Error (MSE), Structural Similarity 
Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Learned Perceptual 
Image Patch Similarity (LPIPS). These metrics were selected to assess both the accu-
racy and structural fidelity of the generated CT images in comparison to the ground 
truth pCT images. 



3 Experiments 

3.1 Datasets 

In this study, we analyzed data from a cohort of 100 breast cancer patients who under-
went adjuvant RT following breast-conserving surgery between March 2020 and De-
cember 2021. We curated a dataset comprising 1400 pairs of CBCT and CT scans from 
40 breast cancer patients, supplemented by an unpaired 4200 CBCT scans from 60 pa-
tients, emulating the real clinical situation for RT. Planning CT images were obtained  
before the initiation of treatment for all patients, utilizing a TOSHIBA scanner operat-
ing at 120 kVp, with a voxel size of 1.367 mm × 1.367 mm × 3 mm, and a voxel count 
of 512 × 512 × (range, 122–179). 

For each treatment session, daily CBCT images were acquired using an ELEKTA 
XVI scanner, employing a voltage of 100 kVp, voxel size of 1.367 mm × 1.367 mm × 
3 mm, and a voxel count of 512 × 512 × (range, 122–179). The CBCT scans underwent 
automatic registration to the pCT system, employing an algorithm accounting for three 
degrees of freedom and the grey values of the images. 

Following the initial registration process, manual adjustments were performed as 
needed to ensure precise alignment between the CBCT and pCT scans. This registration 
process was crucial to guarantee accurate spatial alignment, facilitating subsequent 
analyses and comparisons between the two imaging modalities. 

3.2 Model Comparison 

We compared our model with the supervised model (Pix2pix) [9] as well as the unsu-
pervised model (CycleGAN) [10]. For Pix2pix, we utilized a paired dataset consisting 
of 1400 slices each of CBCT and CT. For CycleGAN, the full dataset was utilized in 
an unsupervised approach, encompassing 5600 CBCT and 1400 CT scans. The evalu-
ation then proceeded with an independent set of 1400 paired CBCT and labeled CT 
images from a distinct patient cohort. 
 
 
Table. 1. Quantitative assessment of the input, pix2pix, CycleGAN, Teacher model, 
and ours in terms of MSE, SSIM, PSNR, and LPIPS. Bold notes the best results 

Metric Input Pix2pix CycleGAN Teacher 
model 

Student 
model 

(proposed) 
MSE 0.0513 0.0047 0.0179 0.0048 0.0047 
SSIM 0.7783 0.8946 0.8742 0.9180 0.9210 
PSNR 13.03 23.69 18.08 23.74 23.79 
LPIPS 1.762e-4 2.074e-5 3.074e-5 2.144e-5 2.158e-5 

 
 
 
 



 

Figure 3. Comparison between ground truth (pCT), CBCT, teacher model and the 
proposed method. 

Figure 4. Comparison between ground truth (pCT), CBCT, pix2pix, cycleGAN, and 
the proposed method. 



4 Results 

4.1 Quantitative Results 

Quantitatively, the proposed method outperformed all counterparts in reducing streak 
artifacts, as substantiated by superior SSIM and PSNR values presented in Table 1. 
While Pix2pix showed competitive performance with a lower MSE and slightly better 
results in the LPIPS metric, our approach consistently demonstrated closer alignment 
to the HU of the ground truth, underlining its efficacy in artifact reduction. Comparative 
experiments against baseline models show exceptional outcomes in MSE, PSNR, and 
SSIM, even surpassing scenarios using only paired data. Despite a slight decrease in 
LPIPS, overall metrics indicates the superior performance of the student model ob-
tained with knowledge distillation. 

4.2 Qualitative Results 

As shown in the Figure 3 and 4, the proposed method notably reduced streak artifacts 
while preserving the image fidelity closer to the ground truth (pCT) images. The qual-
itative comparison shows the proposed method's superior ability to maintain the clarity 
and detail of the original images. This is in contrast to Pix2pix, which, despite its rea-
sonable quantitative performance, tended to produce overly blurry images, leading to 
visual distortions. 

4.3 Failure Cases 

Figure 5 shows a failure case. While the method successfully adjusted the overall HU 
closer to those of pCT, it also introduced non-existent structures, as depicted. This phe-
nomenon is indicative of generative artifacts, a common challenge in generative mod-
els. The issue is especially prominent in small structures, such as the small bronchi. 
Conversely, when structures that were not clearly visible in CBCT, the elimination of 
some structures were noted.  

Figure 5. Exemplified failure cases of the proposed method 



5 Conclusion 

In conclusion, existing studies on CBCT to pCT conversion face various challenges, 
such as dependencies on re-planning CT with identical anatomical structures, discrep-
ancies in HU accuracy within CBCT datasets, and differences in organ shapes and lo-
cations between CT and CBCT [11-13]. Our proposed method integrates both super-
vised and unsupervised approaches, yielding superior performance in terms of MSE, 
PSNR, and SSIM by effectively leveraging paired and unpaired data. While our study 
demonstrates significant advancements over baseline models, it also acknowledges cer-
tain limitations. Nonetheless, it underscores the potential for refining treatment plans 
in adaptive radiation therapy (ART) through the accurate generation of pCT images. 
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