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Abstract. Accurate segmentation of lung nodules in computed tomog-
raphy (CT) images is crucial to advance the treatment of lung cancer.
Methods based on diffusion probabilistic models (DPMs) are widely used
in medical image segmentation tasks. Nevertheless, conventional DPM
encounters challenges when addressing medical image segmentation is-
sues, primarily attributed to the irregular structure of lung nodules and
the inherent resemblance between lung nodules and their surrounding en-
vironments. Consequently, this study introduces an innovative architec-
ture known as the dual-branch Diff-UNet to address the challenges associ-
ated with lung nodule segmentation effectively. Specifically, the denoising
UNet in this architecture interactively processes the semantic informa-
tion captured by the branches of the Transformer and the convolutional
neural network (CNN) through bidirectional connection units. Further-
more, the feature fusion module (FFM) helps integrate the semantic
features extracted by DPM with the locally detailed features captured
by the segmentation network. Simultaneously, a lightweight cross-graph
interaction (CGI) module is introduced in the decoder, which uses region
and edge features as graph nodes to update and propagate cross-domain
features and capture the characteristics of object boundaries. Finally, the
multi-scale cross module (MCM) synergizes the deep features from the
DPM with the edge features from the segmentation network, augmenting
the network’s capability to comprehend images. The Diff-UNet has been
proven effective through experiments on challenging datasets, including
self-collected datasets and LUNA16.

Keywords: Diffusion probabilistic models · Lung nodule · Cross graph
interaction · Feature fusion module · Multi-scale cross module.

1 Introduction

Lung cancer, one of the most common and severe cancers, can have devastating
effects on human lives [1]. It is expected to be the leading cause of death in
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Fig. 1. Overview of the Diff-UNet proposed in this study. Fs,i is the feature of i stage
of the encoder in the segmentation network. The bidirectional connection units use
convolutional layers to refine deep features and interactively connect the two branches.

Europe in 2019 [2]. This disease can be treated effectively with radiotherapy and
chemotherapy. A computed tomography (CT) examination is one of the screen-
ing tools for lung nodules in clinical practice. Nevertheless, manual lung nodule
detection from CT images is time-consuming and labour-intensive, radiologists
meticulously examine each layer of chest CT scans to identify nodules [3, 4].

Recently, deep convolutional neural networks (CNNs) have made significant
advances in natural image processing, particularly in the fields of medical image
segmentation [5–8]. Researchers leverage CNNs to automatically learn high-level
semantic features from images to eliminate the need for hand-crafted descrip-
tors [9–11]. Among various CNN network architectures, UNet [2] has become a
mainstream framework for segmentation tasks because it utilizes low-level and
high-semantic features in the encoder into the decoder. Subsequently, the perfor-
mance of the network was improved by using variant UNet (e.g., DAF3D [12],
ErNet [9], SurrigateNet [10], GenerativeNet [11], CsNet [13], WingsNet [14]).
However, most existing CNNs encounter several challenges. Firstly, they may
not effectively capture global features by employing shared weights in convolu-
tional layers across various spatial locations. Secondly, the networks often utilize
many feature channels, potentially leading to feature redundancy [15–17, 14, 18].

The attention mechanism is anticipated to enhance the segmentation per-
formance of CNNs by concentrating on the most pertinent information in the
feature map while mitigating irrelevant components [7, 19, 20, 12]. SwinTrans [18]
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and TransUNet [15] use Transformer blocks to extend model depth from input to
output to capture multiple levels of global feature representation. Segmentation
models based on deep learning primarily concentrate on acquiring the intensity
features of the input image while neglecting the intrinsic relationships between
regional boundaries [21]. The structure based on graph reasoning can skillfully
promote long-range information propagation [21–23]. However, the performance
of the segmentation networks may be affected by noise in medical images.

The combination of diffusion probabilistic model (DPM) and CNN, as a
denoising method, has been used in image segmentation tasks [24–26, 13]. This
combination enables the CNN to effectively eliminate noise in the segmentation
process. Wolleb et al. [5] proposed to combine the DPM with CNN to address
the challenge of medical image segmentation. However, the backbone network
of UNet [27] is the basis of all these methods, and the features captured by
Transformer are incompatible with those of the backbone network, impeding
the network’s ability to capture global features.

To address these issues, we propose a DPM-based medical image segmenta-
tion network for lung nodules, called Diff-UNet. This architecture interactively
processes semantic information captured by the Transformer and CNN branches
through bidirectional connection units, forming a dual-branch denoising UNet.
Subsequently, incorporating a feature fusion module (FFM) aims to merge the
global context information obtained from the DPM with the local features ac-
quired by the segmentation network. Using the decoder’s cross-graph interaction
(CGI) module facilitates multi-level node updating and feature fusion, enabling
Diff-UNet to effectively capture detailed features within boundary areas. Finally,
the multi-scale cross module (MCM) fully uses the diffusion model to extract
shallow image details and edge information. The contributions of this paper are:

– The decoder incorporates a CGI module to capture the complex correlation
between pixels and their boundary details by performing feature transfer
and aggregation operations on the graph structure to achieve accurate seg-
mentation along the boundary.

– FFM effectively extracts and integrates scale features from the segmentation
network and DPM, improving Diff-UNet’s ability to identify structures of
various sizes, thereby improving segmentation accuracy.

2 Method

2.1 Dual-branch Denoising UNet of DPM

To enhance the ability to capture both local details and global structural infor-
mation in images, we introduce a novel UNet architecture that utilizes a dual-
branch UNet. As shown in Fig. 1 (A), the central part of Diff-UNet consists of
a segmentation network and denoising UNet (DU).

The DU comprises a feature-interactive dual-branch network based on ResNet
[28] and Transformer branches. First, given 3D volume data F0 for the Diff-UNet,
F0 and the noisy label xt are channel concatenated into DU’s encoder to yield
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the multi-scale feature. The ResNet and Transformer branches interact with fea-
tures at each scale through bidirectional connection units. The global context
information obtained from the diffusion model is fused with the local features
obtained from the segmentation network through FFM. The four input feature
maps obtained from the encoder are represented as Yi, i ∈ {1, 2, 3, 4}, which are
input into channel-wise cross attention. After the feature is reshaped, it is con-
verted into a tensor with uniform depth in four channels. The tensors are fed into
the multi-head channel cross-attention module. This process utilizes multi-scale
features to refine features at each UNet encoder level. Subsequently, we input
features into the attention module, To strengthen global dependencies through
multi-stage concatenation. The final output feature vector of the Transformer
block is Oi, i ∈ {1, 2}, and then the CGI module performs multi-level node up-
date and feature fusion on the feature vector Oi so that Diff-UNet can effectively
capture the detailed features in the boundary area. Finally, the MCM is used to
fuse the semantic information of the DPM and the segmentation network.

2.2 Graph Reasoning

A lightweight cross-graph interaction (CGI) module is introduced in the de-
coder, which uses region and edge features as graph nodes to update and prop-
agate cross-domain features and capture features of object boundaries, thereby
adapting to complex image structures. As shown in Fig.1, the decoder obtains
regional depth feature extraction (O1 ) and object-aware edge extraction (O2).
Specifically, it enforces the following three operations:

(1) Graph Projection: fGproj is used to transform feature vectors, Ol
1 or

Ol
2, into graph node embeddings, we parameterize fGproj by W . Each column

wk of W specifies a learnable anchor centre for the k-th node and forms the k-th
column of the node feature matrix V.

(2) Cross-Graph Interaction (CGI):fCGI The process of CGI emulates
the interaction among graphs, transferring inter-graph messages from VO1

to
VO2 , and computes inter-graph dependencies through an attention mechanism.
Initially, Multi-layer perceptrons (MLPs) are utilized to transform VO1 into the
key graph V θ

O1
and the value graph V γ

O1
, while transforming VO2

into the query

graph V k
O2

. Then, a similarity matrix is calculated using matrix multiplication

Ainter
O1−→O2

∈ RK×K as follows:{
Ainter

O1−→O2
= fnorm(VKT

O2
× Vθ

O1
)

V
′

O2
= fCGI(VO1

,VO2
) = χ(Ainter

O1−→O2
× Vγ

O1
) + VO2

(1)

where the semantic information can be transmitted from VO1 to VO2 . χ (·) is
used as a weighting parameter to adjust V ′

O2
in CGI.

(3) Graph Reasoning:fGR and Graph Reprojection:fRproj We use VO1

and V ′

O2
as inputs and perform intra-graph reasoning to create enhanced graph

representations. The function fGR can be applied through graph convolution.
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{
VO1 = fGR(VO1) = g(Aintra

O1
VO1WO1) ∈ RC×K

V
′

O2
= fGR(V

′

O2
) = g(Aintra

O2
V

′

O2
WO2) ∈ RC×K

(2)

where g (·) denotes a non-linear activation function, WO1
and WO2

are parame-
ters that can be learned from the graph convolution layer, and Aintra

O1
and Aintra

O2

represent the graph adjacency matrices corresponding to VO1
and V ′

O2
. By revis-

iting the assignments from the fRproj step, graph representations can be mapped
back to the original coordinates using the enhanced representations.

2.3 Feature Fusion Module and Multi-scale Cross Module

Medical images are complex in structure and rich in detail, considering both
global information and local features. Feature fusion enables the segmentation
network to fully use the global context information generated by the diffu-
sion model, mitigating mis-segmentation due to insufficient global information.
Therefore, we introduce FFM to leverage the connection between the character-
istics of the segmentation network and those of DPM, as shown in Fig.2 (A).
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Fig. 2. (A) FFM. Fd,i is the features of i stage in the encoder of the DU; (B) MCM.
This module is processed with a set of convolutional blocks with kernels of different sizes
to capture multi-scale features. Fs,5 is the feature obtained through graph reasoning.

The attention vectors atts,i and attd,i ∈ RC are produced for Fs,i and Fd,i,
respectively. Subsequently, atts,i and attd,i are sequentially partitioned into k
groups with a length of r, denoted as Gs,i and Gd,i ∈ Rk×r. Next, we establish

the relationship matrix R̂ ∈ Rk×r by computing the inner product between Gs,i

and Gd,i for each group pair, and the modulation matrix M as:R̂ = Gs,iG
T
d,i,M = δ

(
att+ αfc

(
Flatten

(
R̂
)))

FM1
= Ms,i ⊗ Fs,i +Md,i ⊗ Fd,i

(3)

Then, to learn scale-aware feature representations, we feed F 1
M1

into three con-
volutions by using 3×3×3 dilated convolution denoted as Cri

3×3×3 with a dilated
rate of ri ∈ {2, 4, 8}, respectively, thus we can obtain El = Cri

3×3×3

(
F 1
M1

)
, l ∈
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Fig. 3. Example of segmentation results for the self-collected CT image dataset.

{1, 2, 3}. Finally, the concatenated feature is fused with the original feature F 2
M1

.
Thus, this entire procedure can be expressed as:

Ffusion = C3×3×3

(
C3×3×3 (E)⊕ C3×3×3

(
F 2
M1

))
(4)

where E = Cat (E1, E2, E3) is the feature obtained by connecting the scale-aware
features El, l ∈ {1, 2, 3}. Ffusion is the output fusion feature of FFM.

The MCM can fuse the cross-feature maps between the DPM and the seg-
mentation network. Such feature fusion helps to fully use the global context and
local features in the segmentation process, thus effectively solving the size in-
consistency problem of lung nodules, as shown in Fig.2 (B). Specifically, channel
attention [29] handles the input features for the segmentation network and the
DPM. A matrix of adaptive coefficients is derived by concatenating input fea-
tures and applying convolution operations to compress and separate channels.
Different convolution kernels are set to capture multi-scale features in applying
the cross structure. This procedure is represented as follows:

{
A,B = Split(Conv∑

k×k×k
(Cat (Fd,i, Fs,i)))

F̃i = Cat(A⊗ Cha (Fd,i)⊕B,B ⊗ Cha (Fs,i)⊕A)
(5)

where A and B represent the adaptive coefficient matrices; Split (·) represents
the operation of separating features from channels; Cha (·) indicates channel
attention, respectively; Conv∑

k×k×k
, k ∈ {5, 7, 9} corresponds to convolution

with a kernel size of k × k × k. The resulting features are concatenated and
subsequently refined using the dual-branch feature integration (DFI) module.
The DFI involves depth-wise convolutions and a residual connection. The final
output of the MCM is x̂t.
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3 Experiments

3.1 Datasets and Implementation Details

Our experiments used a self-collected dataset of CT images of patients with
lung nodules collected by a local hospital, and a publicly accessible dataset
called LUNA16[30]. The self-collected dataset contains 1299 samples with an
image resolution of 1 mm. The self-collected data were ethically reviewed and
informed consent was obtained from the patients. Experienced radiologists anno-
tated the images based on surgical pathology results using ITK-SNAP software.
In the preprocessing stage of the CT image, the grayscale image is utilized to
determine the approximate location and size of the nodules. Subsequently, a
region of interest (ROI) is selected to encompass the surrounding area of the
nodules. The ROI size of the self-collected CT image and the LUNA16 datasets
are 160× 160× 48 and 32× 64× 64, respectively.

Table 1. Evaluation of segmentation performance on the self-collected dataset.

Model Dice (%) Pr (%) Re (%) JI (%)
UNet [8] 73.4 ± 4.7 82.7 ± 7.1 71.7 ± 5.4 60.5 ± 5.2
TransUNet [15] 76.1 ± 3.3 75.3 ± 6.1 83.0 ± 3.5 64.5 ± 4.3
WingsNet [14] 71.6 ± 2.5 79.1 ± 3.9 72.9 ± 6.0 59.2 ± 2.6
SwinTrans [18] 71.2 ± 4.3 72.7 ± 7.9 78.3 ± 6.6 58.7 ± 4.6
ErNet [9] 75.3 ± 3.1 81.3 ± 5.7 76.2 ± 6.5 63.9 ± 3.5
SurrigateNet [10] 78.9 ± 1.7 86.1 ± 2.1 77.9 ± 3.9 68.4 ± 1.9
GenerativeNet [11] 77.7 ± 2.7 85.4 ± 1.8 76.8 ± 5.1 67.1 ± 3.0
CsNet [13] 78.5 ± 1.9 83.9 ± 3.4 79.3 ± 3.9 67.6 ± 2.2
LcovNet [7] 75.9 ± 2.2 82.1 ± 4.3 76.3 ± 6.2 64.0 ± 2.4
ShadowUNet [19] 73.5 ± 3.3 76.8 ± 6.0 77.7 ± 1.0 61.3 ± 4.0
Ding [6] 77.1 ± 1.3 77.2 ± 2.0 81.9 ± 3.0 65.3 ± 1.6
Ours 83.2 ± 1.5 86.7 ± 2.6 81.8 ± 4.6 71.8 ± 2.3

3.2 Experiments and Results Analysis

The quantitative comparison results of the Diff-UNet and other competing mod-
els on the self-collected and LUNA16 data sets are Table 1 and Table 2, respec-
tively. It can be observed that since Diff-UNet benefits from the superior image
generation ability of DPM and the global context capture ability of Transformer,
it can generate segmentation maps with precise and accurate details, even in ar-
eas characterized by low contrast or blurriness. The Diff-UNet was also applied
to the LUNA16 challenges as part of the validation process for the lung nod-
ule segmentation task. We analyze the Dice coefficient (Dice), Precision (Pr),
Jaccard Index (JI), and Recall (Re) of Diff-UNet and other models.
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Table 2. Evaluation of segmentation performance on the LUNA16 dataset.

Model Dice (%) Pr (%) Re (%) JI (%)

UNet [8] 75.1 ± 2.1 80.9 ± 5.1 63.0 ± 3.2 76.0 ± 4.7
DAF3D [12] 77.5 ± 2.9 80.4 ± 4.6 65.6 ± 3.5 80.0 ± 6.7
LcovNet [7] 75.2 ± 1.9 83.1 ± 4.0 75.1 ± 4.2 64.1 ± 2.1
ShadowUNet [19] 73.5 ± 1.5 67.5 ± 3.0 89.7 ± 1.4 60.1 ± 1.8
Ding [6] 75.1 ± 1.8 81.8 ± 2.9 76.0 ± 5.2 63.9 ± 1.9
ErNet [9] 71.4 ± 1.5 84.9 ± 3.2 68.1 ± 1.6 60.4 ± 1.5
SurrigateNet [10] 72.4 ± 2.2 82.6 ± 5.0 71.6 ± 5.7 61.0 ± 2.2
GenerativeNet [11] 70.7 ± 1.9 84.4 ± 1.5 69.6 ± 2.7 59.7 ± 2.0
CsNet [13] 73.1 ± 2.5 84.8 ± 5.0 70.7 ± 6.0 62.2 ± 2.6
Ours 81.6 ± 1.0 82.9 ± 2.4 84.9 ± 2.3 71.1 ± 1.1

Fig. 3 is the 3D visual surface distance between the predicted result surface
and the ground truth on the self-collected dataset. The segmentation results
approach the ground truth more closely as the green area increases. It can be
observed that Diff-UNet performs more accurate segmentation on parts that
are difficult for human eyes to recognize. Since it can benefit from the diffusion
model’s superior generative ability and the Transformer’s semantic representa-
tion ability, it can produce segmentation maps with precise and accurate details,
even in regions with low contrast or blurriness. These comparisons demonstrate
the effectiveness of our model in capturing lesion boundaries. This is due to the
introduction of the CGI module in the decoder, which enables graph nodes to
propagate cross-domain features and capture features of object boundaries.

3.3 Ablation Study

The ablation experiments were conducted on the self-collected CT image dataset,
and the outcomes are presented in Table 3. We can see that FFM makes the
segmentation network more focused on the lung nodule area in the CT image by
fusing the particular noise information learned by DPM-based architecture with

Table 3. The ablation experiments of the Diff-UNet in the self-collected dataset. Base-
line: Consists of DPM, Encoder, Bridge Transformer, and Decoder

Model Segmentation

Baseline CGI FFM MCM Dice (%) Pr (%) Re (%) JI (%)

✓ 76.9 ± 2.0 75.5 ± 4.4 84.0 ± 4.4 64.8 ± 2.4
✓ ✓ 79.6 ± 1.5 82.5 ± 5.9 81.1 ± 4.5 67.8 ± 1.5
✓ ✓ ✓ 81.7 ± 1.4 85.5 ± 4.7 80.6 ± 4.2 70.1 ± 1.7
✓ ✓ ✓ ✓ 83.2 ± 1.5 86.7 ± 2.6 81.8 ± 4.6 71.8 ± 2.3
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the semantic features of the segmentation network. The MCM combines the low-
level features and texture information captured by the diffusion model with the
high-level semantic features extracted by the segmentation network to obtain a
comprehensive feature representation, thereby enhancing the ability to identify
inconsistent lesion structures in images. The CGI module uses graph nodes to
update and propagate cross-domain features that capture object boundaries.

4 Conclusion

We propose a new, comprehensive lung nodule segmentation framework that
exploits the intuitive correlation between region and boundary features in CT
images to produce more accurate segmentations. Experiments show that this
model uses image area and edge features as graph nodes to update and propagate
cross-domain features and uses DPM to weaken the impact of noise in CT images
on segmentation effects and improve robust segmentation.
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