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Abstract. Precise prognostication can assist physicians in developing
personalized treatment and follow-up plans, which help enhance the
overall survival rates. Recently, enormous amount of research rely on
unimodal data for survival prediction, not fully capitalizing on the com-
plementary information available. With this deficiency, we propose a
Multimodal Low-rank Interaction Fusion Framework Integrating Patho-
logical images and Genomic data (PG-MLIF) for survival prediction. In
this framework, we leverage the gating-based modality attention mech-
anism (MAM) for effective filtering at the feature level and propose the
optimal weight concatenation (OWC) strategy to maximize the integra-
tion of information from pathological images, genomic data, and fused
features at the model level. The model introduces a parallel decompo-
sition strategy called low-rank multimodal fusion (LMF) for the first
time, which simplifies the complexity and facilitates model contribution-
based fusion, addressing the challenge of incomplete and inefficient multi-
modal fusion. Extensive experiments on the public dataset of GBMLGG
and KIRC demonstrate that our PG-MLIF outperforms state-of-the-
art survival prediction methods. Additionally, we significantly stratify
patients based on the hazard ratios obtained from training the two
types of datasets, and the visualization results were generally consis-
tent with the true grade classification. The code is available at: https:
//github.com/panxipeng/PG-MLIF.

Keywords: Pathological images analysis · Multi-genomics data · Mul-
timodal learning · Low-rank interaction fusion · Survival prediction.
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1 Introduction

As a highly aggressive disease, cancer presents challenges in accurate prognosis
prediction due to tumor heterogeneity and biological complexity [3]. Therefore,
accurate prognosis prediction is a formidable challenge. In this context, assessing
tumor progression and accurately predicting prognosis is crucial for physicians
to make correct decisions. Previous studies have primarily relied on morpholog-
ical information from pathological images [18,14] or genetic information [10] for
single-modal prognosis prediction [15]. However, single-modal data capture fea-
tures with a more homogeneous dimension and lack information from different
levels. Recent experiments have demonstrated that effective multi-modal data fu-
sion can lead to more accurate patient prognosis predictions [12]. Tumor biology
research involves various data types, such as pathological images, genomic data,
and clinical information, each offering unique tumor biological characteristics.
Pathological tissue images are considered crucial for cancer diagnosis, providing
nuclei morphological attributes related to tumor invasion, while genomic data,
including gene mutations and expression features, contribute to cancer diagnosis
and prognosis prediction [5,9].

Research on cancer prognosis prediction is advancing with the application
of multi-modal data and deep learning-based fusion methods in survival analy-
sis. Wang et al. [17] implemented a deep bilinear network integrating genes and
pathologies for fusion within and between modalities, and Tan et al. [16] pro-
posed a multimodal fusion framework based on multi-task correlation learning,
with the core fusion method of vector concatenation. However, due to complex
relationships between modalities, simple feature selection methods may not fully
capture diverse information, necessitating more comprehensive fusion techniques.
Another challenge arises from the curse of dimensionality when fusing data from
different modalities, requiring more computational resources and complex mod-
els. For example, Chen et al. [6] and Gordon et al. [2] captured cross-modal
interactions with tensor-based Kronecker products, increasing feature dimen-
sionality and overfitting risk. Chen et al. [7] developed a sophisticated feature
aggregation strategy using a co-attentive transformer approach in multi-instance
learning to capture genotype-phenotype interactions for prognostic prediction.
Lu et al. [13] similarly used a fusion strategy with Transformer for Glioma pa-
tients for tumor grading and survival analysis. Zhou et al. [20] unified multimodal
Transformers for patient triaging. Despite challenges, judicious fusion leverages
the complementarity of multi-modal information to enhance survival prognosis
prediction.

Given the challenges above, we propose a Multi-modal Low-rank Interac-
tion Fusion Framework Integrating Pathological images and Genomic data(PG-
MLIF). The framework use pathological images and multi-genomic data, where
pathological images focus on morphological changes at the tissue level, and ge-
nomic data pay more attention to genetic information and variation at molecular
levels, which complement each other at different levels. Our technical contri-
butions in PG-MLIF are three folds: (i) The MLIF framework consists of a
gating-based modality attention mechanism (MAM), low-rank multimodal fu-



PG-MLIF for Cancer Prognosis Prediction 3

Pathological Images  Genomic Data

 Multimodal Low-rank 
Interaction Fusion Module

（MLIF）

Survival PredictionCox Layer

(a)

(b)

(c)

20x

�� �g

Fig. 1. The proposed PG-MLIF framework. (a) Training single-modal networks for
pathological images and genomic data separately. (b) Utilization of the outcomes from
stage (a) as inputs to the MLIF model for low-rank multimodal fusion. (c) Applying
the Cox model for survival prediction.

sion (LMF), and optimal weight concatenation (OWC). The framework enables
effective fusion at the feature level and model level of different data. (ii) Paral-
lel decomposition is introduced for the first time to efficiently achieve low-rank
fusion of medical multimodal data, which reduces the number of parameters
and computational costs. (iii) The proposed method outperforms current SOTA
ones in the glioma and clear cell renal cell carcinoma data. A comprehensive
visualizations have comfirmed its robust predictive capabilities.

2 Methodology

An overview of the PG-MLIF framework is illustrated in Fig. 1. PG-MLIF is co-
designed by two parts: unimodal extraction of features and fusion network archi-
tectures. Sections 2.1 to 2.2 will present these two parts separately. Additionally,
section 2.3 elaborates on our pivotal fusion method, denoted as Low-rank Multi-
modal Fusion (LMF). This approach leverages a parallel decomposition strategy
for efficient low-rank cross-modal interaction fusion.

2.1 Unimodal Extraction of Feature

Among them, pathological features have a profound impact on the prognostic
assessment and treatment planning of tumors. In order to capture these fea-
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tures, ResNet-50 is employed as the backbone for feature extraction, and the
model is fine-tuned using pre-trained ImageNet weights. Multimodal genomic
data has complex properties such as nonlinearity, high dimensionality, sparsity,
and strong correlation, and in this study, self-normalizing network (SNN) was
employed to achieve globally optimal end-to-end training, which contributes to
better subsequent survival prediction. Finally, we extracted the embedding vec-
tors Zp ∈ R32×1, Zg ∈ R32×1 in pathology as well as genomics, respectively, and
used them as inputs to the fusion network MLIF.

2.2 Multimodal Low-rank Interaction Fusion Framework

Our multimodal network architecture, known as MLIF consists of three key com-
ponents: gating-based modality attention mechanism (MAM), low-rank multi-
modal fusion (LMF), and optimal weight concatenation (OWC).

To harness the full potential of these disparate modalities, we present a
gating-based attention mechanism [1] that dynamically determines the contribu-
tion of each modality to the feature expression, thereby adapting to the intrinsic
importance of each modality. Subsequently, we present LMF to transform the
feature matrices of both modalities into low-rank counterparts. This approach
engenders an intricate interaction between the features, capturing the full spec-
trum of potential cross-modal interactions. The comprehensive methodological
details of this feature fusion approach are elaborated upon in section 2.3. With
this approach, we can fully exchange the information of the two modalities, mine
more correlations. It is also possible to reduce a large number of parameters in
order to better train the model. Finally, for optimal feature representation, we
propose a method known as OWC. This method works by adaptively assigning
different weights to different modalities in order to better utilize the respective
information. The details of the proposed OWC approach are elaborated upon in
section 2.4. In conclusion, the framework effectively addresses the challenges of
incomplete as well as inefficient cross-modal fusion and provides diverse features
for improving the performance of prognostic prediction.

2.3 Low-rank Multimodal Fusion

The primary objective of our study is to integrate single-modal features into com-
pact ones which are suitable for downstream tasks. A pivotal component of the
comprehensive MLIF fusion module is the LMF (Fig. 1). The technique captures
important interactions by introducing low-rank factors and utilizing parallel de-
composition of the low-rank power tensor and the input tensor for fusion. In
contrast to traditional tensor fusion networks (TFN) techniques, the distinctive
feature of LMF fusion lies in its ability to avoid explicit weight creation for
capturing interactions. Additionally, LMF fusion exhibits linear scalability in
modalities, reducing model parameters.

First, before fusion, in order to capture all the important interactions be-
tween unimodal and bimodal data, we add another dimension to each feature
vector before computing the Kronecker product. This ensures that the unimodal
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features remain unaffected, and simultaneously facilitates a more comprehensive
fusion of information between the two modalities while preserving the original
features. This operation, as proposed by Zadeh et al. [19], involves adding a di-
mension to the unimodal features before taking the outer product. Specifically,
the input tensor Z, formed by computing the unimodal features, is given by:

Zh =

[
Zp

1

]
⊗
[
Zg

1

]
, Zp,g ∈ Rdm . (1)

In this computation, ⊗ is the outer product, i.e., Kronecker product, that
is applied to a tensor with m modalities, each i-modality having a different
feature dimension di, and these features form a differential multimodal tensor
Zh in a two-dimensional Cartesian space. To subsequently feed its results into
the predictive model, reducing the feature tensor Zh to h dimensions is usually
necessary, so we use a linear layer g (·) to generate a vector representation as the
output of tensor Z ∈ Rd1×d2×···×dM :

h = g (Z;W, b) = W · Z + b, h, b ∈ Rdy , (2)

where W is the weight of this layer and b is the bias. In performing the ten-
sor dot product W · Z, we consider W to be composed of dh M-order tensors.
Since this operation involves full connectivity, it is necessary to explicitly create
a high-dimensional tensor Z, whose dimensionality grows exponentially with the
number of modalities, and the weight tensor W to be learned grows exponen-
tially accordingly. This increases the computational complexity and the risk of
the model being exposed to overfitting. The LMF method introduced in this
experiment[11] is an improvement built upon TFN. In the tensor dot product
W · Z, we still use the above procedure and consider W as dh matrices, and for
each matrix W̃k ∈ Rd1×d2×···×dM , k = 1, ..., dh, there exists an exact decomposi-
tion vector of the form.

W̃k =
R∑
i=1

⊗M
m=1w

(i)
m,k, w

(i)
m,k ∈ Rd

m, (3)

where the minimum R that makes the decomposition valid is called the rank of
the tensor, in this experiment, the rank is set to a fixed value r. Therefore, based
on the decomposition of W and then on Z = ⊗M

m=1zm, we can extrapolate the
original equation for calculating h as follows (in the case of a bimodal state):

h =

(
r∑

i=1

⊗M
m=1w

(i)
m

)
· Z =

r∑
i=1

(
⊗M

m=1w
(i)
m · ⊗M

m=1zm

)
=

(
r∑

i=1

w(i)
p · Zp

)
◦

(
r∑

i=1

w(i)
g · Zg

)
,

(4)

where ◦ denotes the element level product, i.e., Hadamard product, an essential
aspect of this simplification involves leveraging the parallel decomposition from
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Z and W so that we can calculate h without actually creating the tensor Z from
the input representation Zh.

For the specific implementation of the above LMF method, the core fusion
process involves constructing an interaction matrix using distinct matrices for
pathology and genetics, applying tensor decomposition to partition the feature
tensor into low-rank components, extracting and combining shared data from all
modalities, and forming a final output vector by linearly combining the low-rank
and weight matrices. This approach effectively mitigates dimensional explosion
and facilitates model training by transforming multidimensional information into
low-dimensional feature interactions.

2.4 Optimal Weight Concatenation

Our proposed OWC method uses an adaptive dynamic allocation strategy. This
approach assigns weights to each modality based on its prognostic performance,
adjusting these weights at the model level according to the contribution of the
input data. Specifically, we combine the feature vectors of all models into a com-
posite vector Zi from all models into a combined vector Z=[Zp,Zg,Zh] and then
use a small neural network (combining a feedforward network and a Sigmoid
activation) to learn optimal weights are finally determined to maximize the per-
formance of the model. Once the optimal weights are determined, apply these
weights to the corresponding feature vectors. The final combined feature vector
can be expressed as Z

′

h = [wpZp, wgZg, whZh]. By this method, the information
within and between different modalities is fully utilized, which makes the whole
fusion process correlate with the original data and get the best feature expres-
sion, thus improving the generalization performance of the feature expression.

3 Experiments and Results

3.1 Dataset

To validate our MLIF model, we gathered glioma and clear cell renal cell carci-
noma datasets from TCGA [6]. We selected 1505 diagnostic tissue images with
survival outcomes and grading labels, representing 769 patients. For genomic
data, we downloaded RNA-seq data from TCGA-GBMLGG and TCGA-KIRC
via cBioPortal [8,4]. After DESeq2 analysis, we chose the top 240 prognostic
genes, combining copy number variations (79), mutations (1), and expression
levels. Each patient’s genomic data comprises 320 elements.

3.2 Implementation Details

In practice, we use the Monte Carlo 15-fold cross-validation (MCCV) method
and randomly partition the data into the training and test set (according to
the ID number) with a ratio of 8:2. The MLIF model is trained with Adam
optimizer (lr=2e-4), batch sizes of 8 for pathology and 64 for genes. Implemented
in PyTorch, training was conducted on NVIDIA GeForce RTX 3080Ti GPU.
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Table 1. Comparison of PG-MLIF with other multimodal methods in GBMLGG.

Model Pathology Genomic Multi-modal Fusion Method

MultiCoFusion[16] 0.783±0.016 0.838±0.018 0.857±0.015 Concatenation
MCAT[7] 0.787±0.028 0.598±0.054 0.817±0.021 Co-Attention Transformer
DOF[2] 0.715±0.054 0.716±0.063 0.788±0.067 TFN+MMO Loss

M2F [13] 0.739 0.798 0.827 Transformer Encoder
Pathomic Fusion [6] 0.814±0.023 0.866±0.014 0.878±0.009 TFN

GPDBN[17] NA NA 0.812±0.015 Inter + intra TFN
Ours 0.821±0.020 0.873±0.011 0.895±0.007 LMF + OWC

Table 2. The C-index value of PG-MLIF survival prognosis and ablation experiments
in KIRC.

Model Feature Type C-index P − V alue∗

VGG19 Pathology 0.671±0.023 4.1943e-04
ResNet-50 Pathology 0.676±0.024 2.1542e-04

SNN(ReLU) Genomic 0.684±0.025 3.5955e-11
SNN(SiLU) Genomic 0.703±0.028 1.7532e-11

GPDBN[17] Pathology + Genomic 0.712±0.038 1.4327e-14
Pathomic Fusion [6] Pathology + Genomic 0.719±0.031 1.1537e-11

MLIF(OWC Only) Pathology + Genomic 0.718±0.019 4.0134e-13
MLIF(LMF Only) Pathology + Genomic 0.725±0.030 5.1309e-12

MLIF(LMF + OWC) Pathology + Genomic 0.728±0.028 5.7684e-12
* The P-value is obtained by using each feature type as a classifier and then calculating

the Log-rank test based on the risk values obtained from the testing.

3.3 Evaluation metrics

To assess the performance of our method, we utilize the C-index as an evalua-
tion metric. The C-index assesses the accuracy of survival prediction models by
comparing predicted and valid survival time orders. The formula is:

C − index =

∑
i,j 1tj<1i · 1Ŷ (1)

j >Ŷ
(1)
i

· σj∑
i,j 1tj<ti · σj

, (5)

where the term 1tj<1i indicates that 1tj<1i = 1 when tj < 1i , and otherwise it is
equal to 0. The C-index ranges from 0 to 1, with 0.5 indicating that the model’s
predictive performance is no better than random chance. A C-index above 0.5
signifies improved predictive accuracy.

3.4 Results

Comparison Study. We compared our fusion module with six previous multi-
modal fusion methods on the TCGA-GBMLGG dataset. The results in Table 1
indicate that MLIF outperforms other methods in predicting glioma survival
prognosis, with improved C-index. Both our approach and Pathomic Fusion
performed well, prompting further validation using the TCGA-KIRC dataset.
Using MCCV, our model and Pathomic Fusion achieved C-index values of 0.728
± 0.028 and 0.719 ± 0.031, respectively (Table 2).



8 X.Pan et al.

Table 3. The C-index value of PG-MLIF survival prognosis and ablation experiments
in GBMLGG.

Model Feature Type C-index P − V alue∗

Cox

Age + Gender 0.740±0.019 5.6146e-29
Grade 0.751±0.013 2.2572e-59

Subtype 0.773±0.011 3.5269e-49
Subtype + Gender 0.789±0.013 4.3432e-59

ResNet-50 Pathology 0.821±0.020 4.0153e-88
SNN(ReLU) Genomic 0.866±0.014 2.9415e-66
SNN(SiLU) Genomic 0.873±0.011 7.0080e-41

MLIF(OWC Only) Pathology + Genomic 0.881±0.014 9.6306e-47
MLIF(LMF Only) Pathology + Genomic 0.891±0.013 2.0130e-83

MLIF(LMF + OWC) Pathology + Genomic 0.895±0.007 6.2605e-78

Table 4. Comparison of the training and testing speeds between LMF and TFN.

Model Parameters Training Speed(IPS) Testing Speed(IPS)

Pathomic Fusion(TFN) 773,219 636.94 1424.20
MLIF(LMF) 186,115 1210.65 2250.54

Ablation Study. In comparing survival prognosis tasks across two distinct
datasets, MLIF demonstrates superior performance compared to its founda-
tional experimentation outcomes. The success of MLIF is attributed to inte-
grating LMF’s parallel decomposition strategy and OWC’s optimal weight allo-
cation, effectively combining diverse multimodal features. To evaluate the pivotal
roles of LMF and OWC, we conduct a comprehensive ablation study with two
modes: (1) LMF only. (2) OWC only. Using the second approach exclusively,
the C-index achieves noteworthy values of 0.881 and 0.718 for the respective
TCGA-GBMLGG and TCGA-KIRC datasets, showing an improvement of ap-
proximately 5% over the average baseline performance (Table 3). Employing only
the first method results in improved C-index values for both datasets. Integrating
both modes within MLIF model further elevates performance, with statistically
significant results thoroughly validated through multiple experimental runs.

Complexity Analysis. In practice, our model has significantly fewer param-
eters compared to Pathomic Fusion. Additionally, we evaluated MLIF’s com-
putational complexity by comparing training and testing speeds with Pathomic
Fusion. Using the Time package, we measured 1000 inferences in both models.
The results in Table 4 demonstrate the superiority of the LMF method in medical
image survival analysis, showing improved training and testing speed.

Visualization and Analysis. To delve deeper into improving patient stratifi-
cation through multimodal interactive low-rank fusion, we constructed Kaplan-
Meyer (K-M) curves (see Supplementary Materials). All models demonstrated
statistically significant differences, closely matching actual grade stratification.
This highlights the clinical importance of PG-MLIF in predicting patient strati-
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fication and improving the prognosis of glioma patients.In addition, scrutinizing
predicted patient risk scores, we compared actual vs. anticipated risk within
K-M curves and showed risk distribution plots generated by different networks.

4 Conclusions

This study proposes a novel PG-MLIF framework, that employs deep learning,
for integrating pathological images and genomic data. To effectively integrate
multimodal data, we use MAM for meticulous feature selection, introduce the
LMF technique to improve operational efficiency as well as capture comprehen-
sive features, and propose OWC to further enrich the representational depth of
our features. Extensive experimental results on two datasets demonstrate that
our survival prognostic results outperform both unimodal and existing multi-
modal fusion methods. In addition, the visualization results indicate the frame-
work’s strong ability to distinguish short-term survivors from long-term ones.
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