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Abstract. Cardiovascular Diseases (CVDs) stand as the primary global
cause of mortality, with Abdominal Aortic Calcification (AAC) being a
stable marker of these conditions. AAC can be observed in Dual Energy
X-ray absorptiometry (DXA) lateral view Vertebral Fracture Assessment
(VFA) scans, usually performed for the detection of vertebral fractures.
Early detection of AAC can help reduce the risk of developing clinical
CVD by encouraging preventive measures. Recent efforts to automate
DXA VFA image analysis for AAC detection are restricted to either
predicting an overall AAC score, or they lack performance in granular
AAC score prediction. The latter is important in helping clinicians pre-
dict CVD associated with the diminished Windkessel effect in the aorta.
In this regard, we propose a hybrid Feature Pyramid Network (FPN)
based CNN-Transformer architecture (Hybrid-FPN-AACNet) that em-
ploys a novel Dual Resolution Self-Attention (DRSA) mechanism to en-
hance context for self-attention by working on two different resolutions
of the input feature map. Moreover, the proposed architecture also em-
ploys a novel Efficient Feature Fusion Module (EFFM) that efficiently
combines the features from different hierarchies of Hybrid-FPN-AACNet
for regression tasks. The proposed architecture has achieved State-Of-
The-Art (SOTA) performance at a granular level compared to previous
work. The code is available at https://github.com/zaidilyas89/Hybrid-
FPN-AACNet.

Keywords: Hybrid-FPN-AACLiteNet · Dual Resolution Self-Attention
· Efficient Feature Fusion Module.

1 Introduction
Cardiovascular Diseases (CVDs) are the leading cause of death worldwide, af-
fecting 17.9 million people each year [1]. Atherosclerosis, a precursor to CVDs,
causes calcification in blood vessels, with the abdominal aorta being one of the
initial sites where this condition manifests [2,3]. Abdominal Aortic Calcification
(AAC) is a stable marker of atherosclerosis and can help predict future CVD
events [4,5,6,7]. Early detection of AAC can help promote preventive measures to
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mitigate adverse outcomes related to CVD, including premature death. AAC can
be detected using different imaging modalities such as Computed Tomography
(CT) [8] and digital X-ray imaging [9], however, Dual-Energy X-ray Absorp-
tiometry (DXA) is the modality of choice given its low-cost and low-radiation
exposure [5,6,9,10]. However, identification of AAC from DXA VFA poses chal-
lenges due to low resolution, potential artifacts, and poorly delineated vertebral
boundaries.

AAC-24 scoring [11] is a semi-quantitative method to measure calcification in
the aorta parallel to vertebrae L1-L4. Expert radiologists read the scans and score
the calcification on the anterior and posterior walls of each lumbar vertebrae L1-
L4. Although the process is granular in nature, clinicians mainly use the overall
AAC-24 score, which is the sum of the calcification detected in the aorta. Manual
scoring of AAC-24 is laborious, time-consuming, and costly. Prior research efforts
[12,13,14,16,17,18] to automate DXA VFA image analysis have focused mainly
on detecting the overall AAC-24 score i.e. a single scalar output in the range of 0-
24. Despite reporting satisfactory performance, these methods lack the capability
to locate fine-grained calcification in the aortic regions adjacent to vertebrae L1
to L4. The significance of such granular scores cannot be underestimated. It
is well known that elasticity in the aorta maintains the necessary Windkessel
effect [19] throughout the cardiac cycle (systole and diastole). Calcification, on
the other hand, stiffens the aorta, leading to elevated systolic blood pressure,
left ventricular hypertrophy, and eventually congestive heart failure [20]. This
loss of elasticity, particularly near the heart (i.e., near the L1 and L2 vertebrae
region) increases pulse wave velocity [21,22], reducing the Windkessel effect.
Therefore, identifying the location of AAC can help clinicians predict CVDs
associated with diminished Windkessel effect in the aorta. The only work in
granular AAC detection from VFA DXA images is of Gilani et al. [15], which
utilizes an LSTM to sequentially predict these scores. However, it effectively
lacks the ability to capture local fine-grained patterns and global long-range
dependencies. Thus, [15] reports low agreement with ground truth. Consequently,
we have designed the Hybrid-FPN-AACNet, a framework that introduces more
explainability and accuracy in predicting granular-level AAC from DXA VFA
images.

A drawback of existing deep learning approaches used for AAC detection
from DXA images [14,15,16] is the reliance on the output from the last layer of
the CNN backbone. Layers near the output end of the CNN backbone (deeper
layers) give a coarse location of calcification and add global context by consid-
ering the curvature and shape of the spine, while the layers near the input end
of the CNN-backbone (shallow/initial layers) provide fine local information with
precise location, but lack global context. The intrinsic locality of convolutional
operations hinders the ability of CNNs to model long-range dependencies while
preserving spatial information in images effectively. Therefore, any analysis per-
formed on the output of one hierarchical level may lead to missing information
at other levels. A straightforward approach is to use Feature Pyramid Networks
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(FPN) [23]. However, direct utilization of FPN lacks global attention among fea-
tures and effective mechanism for feature fusion targeting tasks like regression.

Recently, hybrid CNN-Transformer architectures have shown remarkable per-
formance in different medical image processing areas, exploiting benefits from
both architectures [24,25,26]. Inspired by the hybrid approach, we propose a
novel hybrid FPN-based CNN-transformer model, Hybrid-FPN-AACNet. It de-
tects granular level AAC as regression scores and achieves SOTA performance.
Conventionally, the quadratic computational cost of Self-Attention (SA) in a
transformer block is tackled using window-based approaches; however, they limit
the ability of SA to handle global relationships among features. To address this,
we specifically design a Dual-Resolution Self-Attention (DRSA) block that in-
corporates a window-based SA mechanism at two different resolutions of the
same input feature map to capture both, the narrower fine context and the
broader coarse context. Additionally, we also propose a novel Efficient Feature
Fusion Module (EFFM) which combines the feature maps of consecutive hier-
archies efficiently by calculating transposed self-attention i.e. among channels of
concatenated feature maps. Overall, the main contributions of this work are as
follows:

– A Dual Resolution Self Attention (DRSA) block that captures both high and
low-frequency components at different spatial contexts of the input feature
map.

– An Efficient Feature Fusion Fusion Module (EFFM) to efficiently fuse fea-
tures from different hierarchical levels of FPN and incorporate self-attention
information among them.

– An FPN-based hybrid CNN transformer model (Hybrid-FPN-AACNet) that
exploits the potentials of a feature pyramid network built by marrying a CNN
backbone with a transformer architecture, and incorporating an efficient fea-
ture fusion strategy.

2 Proposed Framework
The architecture of our Hybrid-FPN-AACNet is shown in Fig.1. It comprises an
FPN built on a CNN backbone, Transformer blocks employing DRSA, EFFM
blocks to fuse features from consecutive hierarchies, and a regression head with
eight outputs for the prediction of granular scores.

Dual Resolution Self-Attention (DRSA): DRSA is designed to achieve
two objectives, i.e. to capture the information in diverse frequencies inherent in
DXA VFA images and to expand the spatial context of windowed Multi-head
Self-Attention (MSA). Different frequencies play distinct roles in encoding im-
age patterns i.e. High-Frequency (HF) information deals with fine details like the
texture of the object under consideration, and Low-Frequency (LF) information
deals with the global structures, like the shape and curvature of the object. It is
important to consider all these frequency components for a proper image anal-
ysis. Therefore, we apply DRSA on the feature maps of all hierarchical levels
of FPN. DRSA splits the conventional MSA into two paths. One path employs
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Fig. 1. (a) Hybrid-FPN-AACNet with Transformer blocks employing Dual Resolution
Self Attention (DRSA) at each hierarchical level, and Efficient Feature Fusion Module
(EFFM) combining features from consecutive hierarchies. (b) DRSA block performs
self-attention at the actual and low-resolution versions of the feature map to capture
fine-grained local context and coarse broader context. (c) EFFM - efficiently combines
feature maps by calculating self-attention among channels of concatenated features.

local windowed-SA on an actual-sized input feature map to encode HF interac-
tions, and the other path first downsamples the input feature map using average
pooling (a low-pass filter operation) and then applies windowed-SA on it which
captures LF information. We use the same-sized windows in both SA paths.
The use of the same window size on a reduced-size feature map increases the
spatial context of windowed SA and introduces overlap when the encoded fea-
ture maps are eventually combined. Given an input feature map X ∈ RH×W×C ,
where H, W, and C are the height, width, and the number of channels of the
feature map respectively, the DRSA down-samples it using average pooling to
generate a feature map X’ ∈ RH/r×W/r×C , where r is the reduction factor e.g. 2.
Separate Query, Key, and Value embeddings are generated for X and X’ using
linear transformation. Considering a single head, the self-attention for X, and X’,
abbreviated as SAh and SAl respectively are calculated as softmax

(
QhK

T
h

α

)
Vh

and softmax
(

QlK
T
l

α

)
Vl respectively, where Qh, Kh, Vh, Ql, Kl, and Vl are the

query, key, and value embeddings for feature maps X and X’, with respective
self-attentions SAh and SAl. α is the learnable parameter to control SA.

SAtotal = Concat(SAh,Upsample(SAl))Wp (1)
SAtotal (the overall self-attention), is calculated by up-sampling the SAl using

a learnable transposed convolution operation, concatenating it with SAh, and
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Fig. 2. (a) HiLo Attention [27] - Uses the same window count s in both the low and
actual resolution SA paths which limits the context to individual patches. (b) DRSA
(Our Proposed) - Uses the same window size in both resolution SA paths which in-
creases the context in low-resolution SA path, and also introduces overlapping. In (a)
and (b), r is the size reduction factor, and s is the window count.

then passing it through a linear layer Wp. Although DRSA is inspired by HiLo
SA [27], we argue that the latter suffers from two drawbacks in the context of
DXA image analysis. Firstly, since HiLO SA is designed for fast transformer
models, it is restricted in spatial context. Secondly, it avoids overlap of patches
while “paying attention”. Fig. 2 shows the conceptual difference between DRSA
and HiLo SA [27].

Efficient Feature Fusion Module (EFFM): For image regression, a naive
integration approach is to concatenate the feature maps from different hierarchi-
cal levels of FPN along the channel direction and add a regression head at the
end. However, simple concatenation lacks the covariance information among the
concatenated features. Such information may help discern potential correlations
indicating related features and could enhance the model’s performance. Alter-
natively, feature maps from all hierarchical levels can be concatenated, and then
SA applied to them, however, this is computationally expensive due to a large
number of features. We address these problems by proposing an efficient feature
fusion mechanism that combines the feature maps of consecutive hierarchies,
going deeper into the network, and calculates SA among them. For that, it first
concatenates the feature maps and then passes them through a 1×1 convolution
layers to reduce the size of concatenated features. Next, it calculates SA on the
resultant feature map along the concatenation direction i.e. channels. Mathe-
matically, given Fi and Fi−1, the feature maps from the n and n− 1 hierarchies
of FPN, the EFFM mechanism can be formulated as:

FC = Concat(Fi,AvgPool(Fi−1))Wr

FA = TSA(FC)Ws + FC

FO = FFN(FA)Wp + FA

where Wr is the 1 × 1 2D convolution layer, and FC is the concatenated
feature map. TSA is the ‘Transposed Self-Attention’ which is a modified ver-
sion of conventional SA to calculate SA among channel direction, instead of
spatial direction. It generates Q, K, and V embeddings of the shape RC×HW ,
and then calculates self-attention using the formula i.e. V softmax

(
KQT

α

)
. The

attention map in TSA is of the shape C×C which has the covariance infor-
mation among concatenated features. Like a conventional transformer block,
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Table 1. Granular Level Data Distribution of Datasets. Note that for each section
(anterior (A) and posterior(P)) of the vertebra (L1-L4), the distribution is strongly
skewed towards the ‘0’ score.

AAC
Score

DE / SE GE iDXA Dataset (1,916) SE Hologic Dataset (508)
L1 L2 L3 L4 L1 L2 L3 L4

A P A P A P A P A P A P A P A P
0 1517 1498 1404 1360 1217 1120 1252 1013 484 461 453 439 401 383 365 322
1 291 245 355 328 319 339 290 315 22 39 34 50 70 91 89 118
2 64 89 100 121 186 210 151 250 2 7 21 17 23 27 43 57
3 44 84 57 107 194 247 223 338 0 1 0 2 14 7 11 11

the attention-added feature map FA is then passed through the Feed Forward
Network (FFN) to generate the output feature map FO. Ws and Wp are the
projection layers for TSA and FFN respectively. Experimental studies validate
that this overall operation of EFFM improves performance.

3 Experiments and Results
We assess the effectiveness of our proposed framework using three sets of DXA
VFA data: Dual Energy (DE) and Single Energy (SE) DXA variants from the
GE iDXA machine, as well as SE DXA scans from the Hologic Horizon machine.
The GE iDXA machine’s SE and DE datasets comprise 1,916 VFA images with
identical labels and AAC score distribution, however, the generated images orig-
inate from distinctly different methodologies used during the scan, resulting in
varied distributions of pixel values. The Hologic Horizon’s DXA dataset includes
508 VFA scans. Trained radiologists annotated the images using the Kauppila
AAC-24 scoring method [11]. This method divides the abdominal aortic region
in front of the L1 to L4 vertebrae into eight sections, delineating anterior and
posterior sections for each vertebra (L1 to L4). Each section receives a score
based on the extent of AAC. Specifically, a score of 0 is assigned if the AAC is
less than one-third of the length of the adjacent vertebra, 1 if it exceeds one-third
but falls short of two-thirds, and 3 if it extends from more than two-thirds to
the full length of the adjacent vertebra. Thus, each section score ranges from 0
to 3. The distribution of AAC scores for each section (anterior or posterior) of
all vertebrae L1-L4 is illustrated in Table 1, demonstrating a prominent skew
towards 0 scores.

Implementation Details: Images in all three datasets are cropped from the
top half to include the ROI only. For data augmentation, scaling, translation,
rotation, and shear are used. 10-fold stratified cross-validation is used for per-
formance analysis. EfficientNetV2S is used as CNN backbone in all experiments
in this work, unless otherwise stated. The weighted Mean Square Error (MSE)
loss function is used for regression of granular outputs with weight balancing
to tackle the class imbalance problem. The loss function LTotal used is formu-
lated as

∑4
i=1 wAiLAi +

∑4
i=1 wPiLPi, where LAi and LPi are the MSE losses

for the anterior and posterior sections of the four vertebrae, i.e. L1 to L4, with
respective balancing weights wAi and wPi. We implement the proposed model
in Pytorch and train it on NVIDIA GeForce RTX 3080 Ti, using a batch size of
20, learning rate of 5e−4, and Adam Optimizer.
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Table 2. Comparative granular level analysis of the proposed framework with SOTA
and Baseline models across three distinct DXA VFA datasets.

DE DXA Dataset GE iDXA (1,916 scans)
Evaluation Metric Method L1 L2 L3 L4

Pearson Correlation ↑
Gilani et al. [15] 0.49 0.64 0.70 0.69
Saleem et al. [16] 0.73 0.77 0.80 0.82
Hybrid-FPN-AACNet 0.77 0.80 0.83 0.84

Kendall Tau ↑
Gilani et al. [15] 0.44 0.56 0.60 0.58
Saleem et al. [16] 0.49 0.56 0.62 0.63
Hybrid-FPN-AACNet 0.51 0.58 0.65 0.66

Mean Absolute Error ↓
Gilani et al. [15] 0.60 0.67 0.88 1.10
Saleem et al. [16] 0.46 0.50 0.70 0.72
Hybrid-FPN-AACNet 0.43 0.47 0.69 0.70

SE DXA Dataset GE iDXA (1,916 scans)
Evaluation Metric Method L1 L2 L3 L4

Pearson Correlation ↑ Baseline 0.69 0.72 0.79 0.81
Hybrid-FPN-AACNet 0.79 0.81 0.84 0.85

Kendall Tau ↑ Baseline 0.50 0.57 0.61 0.64
Hybrid-FPN-AACNet 0.53 0.60 0.67 0.68

Mean Absolute Error ↓ Baseline 0.44 0.49 0.71 0.70
Hybrid-FPN-AACNet 0.40 0.45 0.67 0.67

SE DXA Dataset Hologic Horizon (508 scans)
Evaluation Metric Method L1 L2 L3 L4

Pearson Correlation ↑ Baseline 0.49 0.47 0.67 0.68
Hybrid-FPN-AACNet 0.60 0.59 0.74 0.70

Kendall Tau ↑ Baseline 0.20 0.30 0.38 0.38
Hybrid-FPN-AACNet 0.27 0.37 0.42 0.40

Mean Absolute Error ↓ Baseline 0.27 0.40 0.46 0.43
Hybrid-FPN-AACNet 0.21 0.35 0.42 0.40

Comparison with Previous Works and Baseline: For the DE DXA
VFA variant of the GE iDXA machine, we evaluate the effectiveness of our pro-
posed framework with the previous works of Gilani et al. [15], and Saleem et al.
[16] The model of Saleem et al. [16] is primarily designed for the single regression
output indicating cumulative AAC score, however, we retrain the model after
replacing its regression head with an eight outputs regression head (same as our
framework). Using the same approach used by Gilani et al. [15], we compare the
results for the combined output of the anterior and posterior sections of each
vertebra. Table 2 illustrates a comparison between correlation and error metrics
for ground truth at the granular level and predicted scores for all three meth-
ods. Our proposed model, Hybrid-FPN-AACNet, demonstrates notably superior
performance across all four vertebrae L1, L2, L3, and L4 exhibiting increase in
Pearson’s correlation. For the SE DXA VFA variants of the GE iDXA machine,
and the Hologic Horizon machine, we compare our approach with a baseline
model only as no one else has previously reported results on them. For our base-
line comparison, we employ the CNN-based FPN architecture (i.e. Hybrid-FPN-
AACNet without DRSA Transformer and EFFM blocks) utilizing simple feature
fusion and a regression head with 8 outputs. Table 2 presents a comparison of
results, demonstrating that our proposed DRSA and EFFM modules improve
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Table 3. Ablation Study - Experiment 1: Effect of using different attention mecha-
nisms, and feature fusion techniques on performance. Experiment 2: Effect of feature
map reduction factor r and window size p in DRSA on model performance.

Ablation Study Experiment 1
Network Configuration L1A L1P L2A L2P L3A L3P L4A L4P

CNN-Backbone 0.54 0.61 0.56 0.67 0.70 0.70 0.69 0.72
CNN-Backbone FPN 0.55 0.61 0.59 0.65 0.71 0.69 0.71 0.73
CNN-Backbone FPN + HiLo
Attention [27] 0.56 0.64 0.62 0.69 0.69 0.72 0.70 0.74

CNN-Backbone FPN + DRSA 0.60 0.66 0.63 0.72 0.71 0.75 0.71 0.77
CNN-Backbone FPN + DRSA
+ EFFM (Proposed) 0.64 0.68 0.65 0.73 0.74 0.76 0.75 0.78

Ablation Study Experiment 2
FPN Hierarchy L1A L1P L2A L2P L3A L3P L4A L4PLvl1 Lvl2 Lvl3 Lvl4 Lvl5

r=4,
p=20

r=4,
p=20

r=4,
p=20

r=2,
p=10

r=2,
p=5 0.59 0.64 0.62 0.70 0.73 0.75 0.75 0.76

r=4,
p=10

r=4,
p=10

r=4,
p=10

r=2,
p=10

r=2,
p=5 0.60 0.66 0.62 0.71 0.74 0.75 0.76 0.77

r=2,
p=20

r=2,
p=20

r=2,
p=20

r=2,
p=10

r=2,
p=5 0.63 0.68 0.64 0.72 0.75 0.75 0.76 0.77

r=2,
p=10

r=2,
p=10

r=2,
p=10

r=2,
p=10

r=2,
p=5 0.64 0.68 0.65 0.73 0.75 0.76 0.76 0.78

performance across all three datasets. Our proposed model has 22.02 million pa-
rameters while the CNN backbone without DRSA and EFFM has 19.84 million
parameters. The inference time of our model increases by 91 ms (i.e. 408.08 ms),
however, the average improvement in performance (PCC) is more than 10%. It
is important to point out that our proposed model performs much better than
the EfficientNetV2M backbone (without DRSA/ EFFM), which is more complex
than ours (52.2 million parameters, 534.4 ms inference time).

Ablation Studies: For the ablation study, in the first experiment, we test
different network configurations including the use of HiLo attention [27], DRSA,
and EFFM. The Pearson Correlation Coefficient is used as an evaluation metric.
Results in Table 3 show that the use of DRSA and EFFM improves the perfor-
mance of the model, especially in the anterior and posterior sections of L1, and
L2 vertebrae where calcification is usually in small amount and is difficult to
differentiate from artifacts. In the second experiment, we test the effect of the
feature map reduction factor (r) and the window size (p) in the DRSA block
on model performance. For the DRSA blocks of the last two feature hierarchies,
i.e. Lvl4 and Lvl5, we keep (r) and (p) fixed as feature maps in these levels
already have small dimensions. The results in Table 3 show that the use of large
reduction factor r deteriorates the performance of the model as it misses impor-
tant information due to extensive downsampling. Optimal results are obtained
with a window size of p of 10. A larger window size introduces more parameter
complexity to the model. For further ablation study experiments, please refer to
supplementary material.
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4 Conclusion
This paper proposed a novel hybrid CNN-Transformer model Hybrid FPN-
AACNet, based on the FPN hierarchy that employs a novel dual resolution
self-attention block DRSA and efficient feature fusion module EFFM. The pro-
posed model calculates and combines high frequency local context and low fre-
quency broader context at each hierarchial level of FPN and effectively combines
the feature maps using EFFM. The proposed architecture has achieved SOTA
performance at granular level AAC detection.
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