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Abstract. The single greatest obstacle in developing effective algorithms
for removing surgical smoke in laparoscopic surgery is the lack of a
paired dataset featuring real smoky and smoke-free surgical scenes. Con-
sequently, existing de-smoking algorithms are developed and evaluated
based on atmospheric scattering models, synthetic data, and non-reference
image enhancement metrics, which do not adequately capture the com-
plexity and essence of in vivo surgical scenes with smoke. To bridge
this gap, we propose creating a paired dataset by identifying video se-
quences with relatively stationary scenes from existing laparoscopic sur-
gical recordings where smoke emerges. In addition, we developed an ap-
proach to facilitate robust motion tracking through smoke to compensate
for patients’ involuntary movements. As a result, we obtained 21 video se-
quences from 63 laparoscopic prostatectomy procedure recordings, com-
prising 961 pairs of smoky images and their corresponding smoke-free
ground truth. Using this unique dataset, we compared a representative
set of current de-smoking methods, confirming their efficacy and reveal-
ing their limitations, thereby offering insights for future directions. The
dataset is available at https://github.com/wxia43/DesmokeData.

Keywords: Benchmark dataset · surgical image de-smoking · laparo-
scopic surgery · dataset creation

1 Introduction

Laparoscopic surgery, with its minimally invasive approach, has significantly
transformed patient care by reducing recovery times and minimizing infection
risks. However, the smoke generated by electrocautery or laser tools during these
procedures poses a substantial challenge, as it obscures the surgical field, poten-
tially increasing the risk of errors and prolonging operation times [1]. While hard-
ware solutions like Laparoshield ™and the ClearFlow Smoke Evacuation System
are available, their need for repetitive manual operation is time-consuming, inef-
ficient, and negatively impacts surgeons’ performance [7]. A preferred alternative
involves digitally removing the appearance of smoke through a de-smoking im-
age processing technique, thereby providing surgeons with an unobstructed view
of the surgical site in situ [21].

https://github.com/wxia43/DesmokeData
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A major obstacle in developing surgical image de-smoking algorithms is the
scarcity of paired in vivo images, consisting of smoky laparoscopic images and
their corresponding smoke-free ground truths. As extensively reported in recent
literature [21,5,23,17,30], there is currently no in vivo paired dataset available
for laparoscopic de-smoking. The absence of such a dataset significantly hinders
progress in surgical de-smoking research in three key areas.

1. Development of Suitable Image Models: Traditional models, such as
the atmospheric physical model [11], are designed for outdoor scenes and do
not adequately capture the unique characteristics of surgical scenes, includ-
ing uneven lighting and limited depth. Additionally, surgical smoke has dif-
ferent scattering properties than outdoor haze or fog, leading to secondary re-
flections and altering scene illumination rather than simply obscuring it [22].
The close proximity and high magnification of the surgical camera make large
particles or droplets visible, resulting in a non-uniform smoke distribution
across the laparoscopic scene. This could potentially limit the effectiveness
and authenticity of creating synthetic data.

2. Advancement of AI-Based Methods: To overcome the absence of a
paired dataset, AI-based de-smoking algorithms have typically been de-
veloped using synthetic data [21,5,23,30] or through unpaired learning ap-
proaches [17,12,18,19]. However, models trained solely on synthetic paired
images tend to overfit and often generalize poorly [28] to in vivo surgical
scenes, especially when synthetic data are generated through inaccurate im-
age modelling. In the case of unpaired learning, the lack of direct correspon-
dence between images can lead to suboptimal image restoration [25]. Tech-
niques such as CycleGAN [31] may introduce artifacts and structural distor-
tions, often failing to utilize high-quality information from ground truth for
guiding the image restoration process [4]. Furthermore, they can cause colour
distortions and detail loss, thereby hindering the application of downstream
techniques for surgical image enhancement.

3. Evaluation and Comparison of Algorithms: Conducting fair and rig-
orous evaluations of de-smoking algorithms is challenging without a paired
in vivo dataset. While non-reference metrics offer an intuitive evaluation of
de-smoking results from several image quality perspectives, including con-
trast, sharpness, and naturalness [9], they are inadequate in determining the
presence of image artifacts, the trueness of recovered structural content, and
colour fidelity compared to fully referenced metrics. This limitation restricts
the quantitative assessment of the efficacy of existing techniques using in
vivo surgical data, thereby hindering the iterative process of algorithmic
improvements. In contrast, referenced metrics set a definitive performance
standard, making them indispensable in applications where preserving the
original image quality is critical, especially during laparoscopic surgeries.

These scenarios lead to a significant need in the medical imaging community
for a paired in vivo dataset tailored to laparoscopic surgical de-smoking. To ad-
dress this need, we present a novel methodology to create the first in vivo paired
dataset for surgical de-smoking. Our contributions are threefold: 1) Development
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of a novel surgical de-smoking dataset, currently comprising 21 scenes with 961
pairs of smoky and smoke-free images, marking the first dataset to offer realistic
smoke-free ground truth for surgical scenes, 2) A cost-effective methodology to
generate such a paired dataset from existing laparoscopic surgical videos, and
3) Evaluation of eight recent de-smoking algorithms using our dataset, providing
a benchmark for future research.

2 Key Challenges

The process of creating such a dataset is impeded by the following challenges:
1. De-smoking ground truth cannot be manually labelled: Creating

paired datasets in medical imaging often relies on human annotation, with object
segmentation being a prime example. Humans excel at recognizing patterns and
spatial awareness, which facilitate manual segmentation based on visual cues and
feature localization. However, creating ground truth for image restoration tasks,
such as de-smoking, involves reconstructing the original, unobstructed image
content in its natural appearance. This process requires precise knowledge of the
original scene’s appearance and the specific degradation effects, which are beyond
human capability to accurately recreate without computational assistance.

2. Efficacy vs. cost trade-off for ex vivo simulation: A feasible, though
not ideal, approach involves creating a paired dataset using ex vivo tissues by
capturing stationary scenes both with and without smoke. One such pioneering
effort is from the TMI dataset [10], which includes a sub-dataset comprising 5
pairs of ex vivo images of animal abdominal organs under both smoky and smoke-
free conditions. However, this method is insufficient for emulating the intricate
details of in vivo laparoscopic scenes, such as the natural colour of in vivo tissues,
reflections from bodily fluids, irregular organ surfaces due to surgical cuts and
incisions, and the appearance of smoke in a pressurized environment under single-
source lighting. While some of these technical challenges could be overcome with
sufficient time and resources, the high costs make this methodology impractical
for creating large datasets to simulate various surgical scenarios.

3. In vivo data usually contains unpredictable motion: Similar to the
ex vivo approach, conducting in vivo animal trials while capturing images from
simulated surgical procedures may be viable. However, in addition to the issue of
cost, which naturally limits the sample size, in vivo data often exhibit inherent
motion caused by the live subject’s breathing, heartbeat, and involuntary mus-
cle movements. Such motion renders the surgical scene dynamic, undermining
the strategy of using a smoke-free scene at an early timeframe as the ground
truth for subsequent smoky scenes. To solve this problem, dense pixel-based mo-
tion correction is required. However, developing a tracking algorithm capable of
operating under heavy vision obstructions, such as surgical smoke, remains a
significant challenge [8].
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3 Dataset Creation

The premise of our approach to creating a paired dataset, i.e. identical scenes
with and without surgical smoke, is the recognition of the existence of nearly sta-
tionary scenes during surgery when the smoke is about to emerge. Concretely,
the moment immediately before and after the cauterization tool is activated, the
spatial arrangements of the surgical scene are nearly identical, but the image se-
quence captured immediately after cauterization contains surgical smoke. Their
spatial arrangement contains subtle differences, perturbed possibly by the cam-
era, surgical tool, and involuntary anatomical motion. To ensure the creation of
a paired dataset with identical spatial arrangement, we further apply a motion
correction technique to align the paired images. To address each type of motion,
our method is divided into two stages: 1) Candidate video clip selection and large
motion rejection, and 2) Small motion correction and paired data refinement.

3.1 Candidate video clip selection

Fig. 1. Workflow for our database creation. a) Illustrates video clip selection for large
motion rejection. b) Illustrates paired data refinement to address any remaining motion.
c) A workflow for our motion estimation showcasing red channel priors.
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We first manually screen laparoscopic videos to identify stationary sequences
with emerging smoke, focusing on excluding large motion. A set of surgical videos
recorded during robotic-assisted abdominal surgeries was obtained, chosen for
their stability provided by mechanically held cameras with minimal camera mo-
tion during cauterization. Additionally, the chosen surgical scenario is prostatec-
tomy: due to the site’s distant proximity from the heart and lungs, is minimally
impacted by involuntary anatomical movements. We then manually identified
all video sequences where smoke emerges clearly, typically lasting 1-2 seconds
from the start of cauterization, to ensure limited motion perturbed by tools and
anatomies. These video segments were manually inspected to further reject clips
based on the following criteria: 1) visible motion of the surgical tools or soft tis-
sues, 2) visible camera motion, and 3) presence of dissected tissues. Finally, we
conducted an additional round of visual inspection on the selected video clips to
segment regions with minimal motion, excluding areas with visible motion and
deformation. For our surgical video with spatial dimensions of 700× 350 pixels,
we defined "visible motion" as a tolerance of 5 pixels. This segmentation was
consistently applied to all frames in the selected video sequence. To facilitate
the visual inspection of local motion caused by the human operator, each pair
of temporally adjacent video frames was converted into an animated GIF. This
step yielded a set of candidate video segments each having an initial smoke-free
frame serving as the potential "ground truth" for subsequent paired images with
smoke. A graphical workflow is given in Fig. 1(a).

3.2 Motion correction using red channel prior

(a) (b) (c)

Fig. 2. Illustration of motion correction error when computing optical flow directly
between smoke-free and smoky frames (a) smoky current frame (b) smoke-free previous
frame(c) erroneous warping of previous smoke-free frame to match current frame

Video frames within the candidate video clip are not completely stationary,
exhibiting small and continuous motion of the soft tissue and surgical instru-
ments. While one may attempt to apply 2D deformable registration to warp the
initial smoke-free frame to align with subsequent smoky images, the presence
of surgical smoke makes this approach particularly challenging. As shown in
Fig. 2, if the smoke-free image is warped using optical flow to match the smoky
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image, large warping errors would occur. To circumvent this problem, we pro-
pose to employ only the red channel image to facilitate motion correction. Our
observation is that the red channel is the least affected and degraded colour by
surgical smoke compared to the other colour channels. This may be attributed
to the longer wavelength of red light, which allows it to penetrate atmospheric
conditions more effectively than the shorter wavelengths of blue or green light,
causing the red light to scatter less when it encounters particles suspended in
the air [2]. Since the red channel is also the dominant colour for surgical im-
ages [26], using it for tracking is advantageous as the red channel contains more
background information with less degradation from smoke. As the max channel
is commonly used to compute the illumination map for each image [3], smoke
in the red channel can be considered as illumination differences between smoky
and smoke-free images. Thus, we propose equalizing the illumination and "de-
enhancing" the red channel of smoky images for robust motion correction. To
facilitate the red channel de-enhancement, we first extract the red channel from
the current smoky frame I and the smoke-free ground truth from the previous
time frame G. We then construct the red channel prior map SI

∗ and SG
∗ for Ir

and Gr, respectively, using the structural images [27]:

SI
∗ = argmin

SI

1

ρ
||Ir − SI ||2F + ||(Ir ∗ gσ)⊙∇SI ||1 (1)

SG
∗ = argmin

SG

1

ρ
||Gr − SG||2F + ||(Gr ∗ gσ)⊙∇SG||1 (2)

where ρ > 0 is a regularization parameter, ||·||F and ||·|| represent the Frobenius
norm and l1 norm, gσ represents Gaussian kernel with standard deviation σ, and
⊙ denotes Hadamard product. The de-enhancement map E can be obtained by:

E(x) =
maxx∈Ω S∗

G(x)

maxx∈Ω S∗
I (x)

(3)

where Ω is a region centered at pixel x. The de-enhanced red channel for a
smoky image is obtained by I∗r = E ⊙ Ir. The motion field D∗ estimated by
TV-L1 optical flow is obtained by Zach’s approach [29]:

D∗ = argmin
D

∑
x∈Ω

(|Gr(x)− I∗r (x+D(x))|+ |∇D|) (4)

The motion field D∗ is then used to warp G to obtain the corresponding smoke-
free ground truth for I. For each sequence, the ground truth at time tn is obtained
by warping the initial smoke-free frame at t0. The workflow for motion correction
and red channel de-enhancement is shown in Fig. 1(b) and (c). Human inspection
remains the last safeguard to discard the frame or the entire dataset when there
is any visible motion between the paired data.
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4 Benchmark Dataset

A set of surgical videos was collected from a previous study of robotic-assisted
laparoscopic radical prostatectomy performed using a da Vinci Si surgical sys-
tem. In total, we reviewed 63 surgical recordings with an average of 37 minutes
per video, and 32 candidate clips were identified after the first stage of screen-
ing. Among 32 candidates, 26 sequences were successful in motion correction,
with no visible misalignment between paired images, and 5 more sequences were
eventually discarded as the smoke was too thin to be significant. Each sequence
contains varying levels of smoke from light to heavy, including the more challeng-
ing cases of non-homogeneous smoke containing suspended particles. Ultimately,
our current dataset consists of 21 video sequences and 961 pairs of smoky images
and their corresponding smoke-free ground truths, constituting less than 0.03%
of the entire reviewed video frames. Three human operators were involved in the
reviewing process and a consensus was reached for the final paired dataset.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. De-smoking results comparison examples (a) Smokey images (b) Smoke-free
ground truth (c) M1 (d) M2 (e) M3 (f) M4 (g) M5 (h) M6 (i) M7 (j) M8
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Table 1. Quantitative comparison of 8 de-smoking methods over 961 images

Method Approach Train data SSIM ↑ PSNR ↑ CIEDE-2000 ↓
M1 [12] CycGan Unpaired 0.83 ± 0.14 17.97 ± 4.98 11.70 ± 7.49

M2 [13] CNN Synthetic 0.88 ± 0.11 19.95 ± 3.94 7.93 ± 5.51

M3 [17] CycGan Unpaired 0.86 ± 0.10 19.44 ± 3.40 8.67 ± 4.10

M4 [15] CNN Synthetic 0.86 ± 0.08 19.74 ± 3.58 8.42 ± 4.15

M5 [16] ViT Synthetic 0.88 ± 0.14 20.80 ± 6.23 8.27 ± 6.98

M6 [6] ViT Outdoor 0.83 ± 0.08 20.29 ± 4.19 9.45 ± 4.94

M7 [20] Variational – 0.87 ± 0.09 18.36 ± 2.29 9.37 ± 3.21

M8 [9] Analytical – 0.86 ± 0.11 18.77 ± 3.68 9.25 ± 5.42

4.1 Benchmark Performance

Using our in vivo paired dataset, we compare recent de-smoking methods to
establish a benchmark for future study, including two CycleGan-based methods,
two CNN-based methods, two vision transformer (ViT) based methods, and
two non-learning-based methods. For learning-based approaches, we compared
methods with open source availability: (M1) a CycleGan-based unpaired method
trained using inter-channel discrepancies and dark channel prior (DCP) [12],
(M2) an image translation-based method with DCP guidance mask [13], (M3) A
two-stage method combining pre-trained image translation and CycleGan [17],
(M4) A image translation network utilizing SSIM and perceptual loss [15], (M5)
An improved ViT with modified network architecture and spatial information
aggregation scheme [16], (M6) A ViT-based method with uncertainty feedback
for refinement by [6]. Although M5 and M6 are not trained on surgical scenes,
they are the current lead for the homogenous high resolution dehaze dataset and
outdoor non-homogeneous smoke dataset respectively, representing SOTA meth-
ods for natural scenes. For non-learning methods, we studied: (M7) a variational
smoke separation algorithm with a smoke veil prior model [20], and (M8) a Pois-
son fusion-based defogging algorithm [9]. For evaluation metrics, we use peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM) [24], and colour
difference formula (CIEDE-2000) [14]. Representative qualitative comparison ex-
amples are given in Fig. 3 including homogenous and non-homogenous smoke
with a comprehensive quantitative evaluation given in Table 1. From Fig. 3, all
methods are capable of removing smoke from in vivo images to certain degrees,
especially for homogeneous smoke, and all methods seem to be less effective for
scenes with non-homogeneous smoke and particles. Colour distortion and detail
degradation are also observed, especially when smoke becomes heavy. In particu-
lar, M2 [13] and M5 [16] seem to produce the best results from visual inspection,
striking a good balance between smoke removal and colour preservation. Based
on the quantitative comparison in Table. 1, methods M2 [13] and M5 [16] have
the highest SSIM and PSNR while causing less colour loss by CIEDE-2000 met-
ric.
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5 Conclusion and Future work

In this paper, we present the first paired dataset, i.e. paired images with and
without surgical smoke, for laparoscopic image de-smoking techniques. We de-
tailed the challenges of creating such a dataset using in vivo surgical videos
and presented a novel methodology based on motion correction in the pres-
ence of surgical smoke. Moreover, our dataset contains consecutive video frames,
making it suitable for evaluating an algorithm’s performance consistency and
stability over time, providing a mechanism to evaluate video- or sequence-based
algorithms. Comparative studies confirmed the ability of current methods to re-
move smoke under surgical scenarios and revealed their limitations in dealing
with non-homogeneous smoke and in preserving colour and detail. These find-
ings suggest areas for future research and potential improvements in de-smoking
techniques. The limitations of our work include 1) Our dataset primarily consists
of video sequences with relatively stationary scenes, which may not be represen-
tative of all surgical scenarios, and 2) Our current approach for constructing
this dataset relies on significant manual inspection of surgical videos, which is
time-consuming and thus limits the expansion of the dataset. Immediate future
work includes developing a deep-learning-based content recognition network to
expedite the process and expanding the size of the dataset.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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