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Abstract. Automated segmentation of stroke lesions on non-contrast
CT (NCCT) images is essential for efficient diagnosis of stroke patients.
Although diffusion probabilistic models have shown promising advance-
ments across various fields, their application to medical imaging expos-
es limitations due to the use of conventional isotropic Gaussian noise.
Isotropic Gaussian noise overlooks the structural information and strong
voxel dependencies in medical images. In this paper, a novel frame-
work employing synchronous diffusion processes on image-labels is in-
troduced, combined with a sampling strategy for anisotropic noise, to
improve stroke lesion segmentation performance on NCCT. Our method
acknowledges the significance of anatomical information during diffu-
sion, contrasting with the traditional diffusion processes that assume
isotropic Gaussian noise added to voxels independently. By integrating
correlations among image voxels within specific anatomical regions into
the denoising process, our approach enhances the robustness of neural
networks, resulting in improved accuracy in stroke lesion segmentation.
The proposed method has been evaluated on two datasets where ex-
perimental results demonstrate the capability of the proposed method
to accurately segment ischemic infarcts on NCCT images. Furthermore,
comparative analysis against state-of-the-art models, including U-net,
transformer, and DPM-based segmentation methods, highlights the ad-
vantages of our method in terms of segmentation metrics. The code is
publicly available at https://github.com/zhangjianhai/SADPM.

1 Introduction

The primary objective of automated computer-aided analysis is to enable al-
gorithms to deliver swift, accurate, and reliable results to support clinical di-
agnoses. In medical image segmentation for stroke lesions, the conventional
⋆ Corresponding Author
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methods involve manual contouring of images for volume measurements. This
process is time-consuming and sensitive to observer dependence. In response,
computer-aided techniques have emerged to enhance efficiency and eliminate
observer bias, showing substantial potential for automated stroke lesion segmen-
tation [1][14][23].

Recently, the variants of denoising diffusion probabilistic models (DDPMs)
have shown an improvement and future potential for segmentation of medical
images for a broad range of applications [22][27]. The success of DDPMs is at-
tributed to an efficient recursive denoising mechanism that is robust against a
high degree of noise disturbances [30]. However, most of the applications are
demonstrated in the domain of natural images, such as: portraits, paysage, and
camera surveillance, where isotropic Gaussian noise is usually assumed and used
in the denoising process. By contrast, medical images possess unique charac-
teristics, stable image structure, immobilized intensities and texture etc., that
make isotropic noise unsuitable for segmentation tasks. To this end, we propose
a specific kind of anisotropic noise, allowing for the correlations among coordi-
nates in the cerebral images, potentially improving segmentation performance.
Furthermore, there is rare research on such specific type of noise.

Specifically, cerebral images typically have voxels with a relatively standard
atlas structural information [18][7] that can be used as a prior, whereas natural
images are more unconstrained. For instance, the facial recognition will deal
with the portraits with a variety of poses, illuminations, zoom and sizes, etc.
A limitation of current models based on DDPMs is using isotropic Gaussian
noise, which assume that the voxels are independent so that some useful prior
information regrettably fails to be utilized.

In this paper, a fully probabilistic inference framework is proposed for stroke
lesion segmentation on non-contrast CT scans based on a synchronous image-
label denoising diffusion model with anisotropic Gaussian noise [28][8]. A vari-
ational inference is developed to efficiently train the model. A set of related
strategies on synchronous diffusion process to image-labels is proposed to even-
tually infer the lesion labels. For sampling anisotropic Gaussian noises, since each
noise sampling is an element located on a high-dimensional symmetric positive
definite manifold (Riemannian manifold), it is impossible to get the sampling
instances immediately from such a matrix distribution [3]. To implement the
efficient sampling, an approximate sampling algorithm using Random Fourier
Features with time effectiveness is developed to obtain the anisotropic noise for
our segmentation tasks. The segmentation framework is illustrated in Fig.1.

2 Methodology

2.1 Semantic Segmentation of Medical Images

We extend the diffusion model to segmentation tasks with the form pθ(y0|x0) =
pθ(y0, x0)/pθ(x0) ∝ pθ(y0, x0), where pθ(y0, x0) ,

∫
pθ(x0:T , y0:T )dx1:T , y1:T ,

and y1:T are the latent variables. The joint distribution pθ(x0:T , y0:T ) is de-
fined as the reverse process, and it can be factorized as an original DDPM [11]
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Fig. 1. Synchronous diffusion process and reverse process with anisotropic noise for
image segmentation tasks

part pθ(x0:T ) and a conditional reverse process pθ(y0:T |x0:T ), which is a series
of terms by Markov chains starting at pθ(yT |xT ):

pθ(y0:T |x0:T ) = pθ(yT |xT )
∏T

t=1
pθ(yt−1|yt, xt−1)

The diffusion process is an approximate conditional posterior q(y1:T |y0, x0:T ):

q(y1:T |y0, x0:T ) =
∏T

t=1
q(yt|yt−1, xt)

A KL Divergence is defined between the diffusion process q(y1:T |y0, x0:T ) and
the reverse process pθ(y0:T |x0:T ) to obtain the variational upper bound on the
negative log likelihood because of non-negative property of KL divergence. After
simplifying, the loss is represented as:

L ,Eq

[
log

pθ(y0|x0)

pθ(yT |xT )
+
∑T

t=1
log

q(yt|yt−1, xt)

pθ(yt−1|yt, xt−1)

]
(1)

To optimize the loss, an additional sub-network for estimating the label with
added noise yT from the image xT is introduced into the backbone of the network.

In (1), however, using yT as the start point of inference could produce a poor
result and degrade the segmentation performance. Thus, we obtain a suitable
initial yt for inferring y0. To this end, we add a time window of length Tp to train
the model at each time, which is the loss Lp in (2), guaranteeing that the label
y0 could be efficiently restored. With the initial yt is predicted in the model, the
loss function is further simplified as:

L =Eq

[∑T

t=2
log

q(yt−1|yt, y0, xt)

pθ(yt−1|yt)

]
︸ ︷︷ ︸

Ld

−
∑Tp

t=0
logpθ(yt|xt)︸ ︷︷ ︸

Lp

− logpθ(y0|y1)︸ ︷︷ ︸
Ld0

(2)
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Algorithm 1 Label Inference for Semantic Segmentation
1: Input: image x0, Parameters: di ∈ R(0,1), Ti < T
2: Initialization: noised image x̂Ti = xTi and noised label ŷTi using (3)
3: estimate noise ε̂Ti using the trained neural network
4: for t = Ti, · · · , 1 do
5: estimate x̂0, ŷ0 using Eq.(3)
6: if t > 1 then
7: sampling ε ∼ N (0, I): estimate x̂t−1 =

√
ᾱt−1x̂0 +

√
αtγt−1√

γt
ε̂t +

βtγt−1

γt
ε

8: and ŷt−1 =
√
ᾱt−1ŷ0 +

√
αtγt−1√

γt
ε̂t +

diβtγt−1

γt
ε

9: update next loop noise ε̂t−1 from x̂t−1 using the trained neural network
10: else if t = 1 then
11: estimate ŷ0 using Eq.(3), ŷfinal

0 =
√
ᾱt−1ŷ0 +

√
αtγt−1√

γt
ε̂t

12: Output: estimate label ŷfinal
0

For the loss Ld, the term pθ(yt−1|yt) in the reverse process is still compared us-
ing KL divergence by the conditional posterior q(yt−1|yt, y0, xt), as introduced
in [11]. To make the distribution q(yt−1|yt, y0, xt) tractable, a further assump-
tion is made that images and labels are both overlain with the same Gaussian
noises during the diffusion process. Therefore, the posterior q(yt|yt−1, y0, xt) is
degenerated as q(yt−1|y0, εt), which only relies on the noise at time t and y0:

q(yt−1|y0, εt) = N (yt−1|µ̃t, β̃tΣ)

where µ̃t =
√
ᾱt−1y0 +

√
αt(γt−1γ

− 1
2

t )εt, β̃t = βtγt−1γ
−1
t

Since the diffusion process for images and labels share the same noise εt ∼
N (0,Σ), the images and labels at time t can thus be sampled as:

xt =
√
ᾱtx0 +

√
γtεt, yt =

√
ᾱty0 +

√
γtεt (3)

The loss Ld0
is used for optimizing the last layer of generating y0. During

the inference, there may be many cumbersome discrete segmentation points that
degrade the performance to some degree. To limit the influence of noise to this
effect, in addition to applying the same strategy to stop adding uncertainty
inference of the variance β̃1 in [11], a convolutional layer is also appended with
frozen parameters of all ones to get rid of the spurious points with a threshold.
Finally, the segmentation label can be inferred by Algorithm 1.

2.2 Anisotropic Noise and Approximate Sampling on
High-dimensional Manifold

The acquisition of isotropic Gaussian noise is simple and straightforward, i.e.,
εt ∼ N (0, Σ) and Σ is set to be I. We argue that a kind of customized noise
is more suitable for medical images, where the voxels are holding a fixed struc-
ture information, such as the brain atlas for stroke lesion. Recently work [6][24]
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has demonstrated that isotropic noise can work well in natural images. Unfortu-
nately, the isotropic noise assumes that the voxels are independent so that the
useful structural prior information regrettably fails to be utilized. Considering
the correlation among voxels into the denoising process is able to efficiently help
optimize more robust neural networks, yielding a potential improvement to some
degree on the specific stoke lesion segmentation tasks on non-contrast CT scans.

2.3 Sampling Anisotropic Noise on High-dimensional Manifold

Since anisotropic covariance Σ is of the manifold [13] with the dimension dΣ =

|SPDΣ
++| =

d(d−1)
2 , where d = L×H ×W . It is impossible to conduct sampling

immediately from N (0, Σ) on a such high-dimensional distribution. To make
this tractable, an approximate algorithm using Random Fourier Features [21]
(RFF) is developed to obtain anisotropic noise samplings.

Bochner Theorem[19]: A continuous shift-invariant kernel k(xn, xm) =
k(xn − xm) on Rd is positive definite if and only if k(δ) is the Fourier transform
of a non-negative measure. �

The Bochner theorem states that the Fourier transform p(ω) of a non-negative
measure k(δ) is a proper probabilistic density distribution. Thus, a shift-invariant
kernel k(∇) can be represented with ζω(x

n) = ejω
T xn

:

k(xn − xm) =

∫
Rd

p(ω)ejω
T (xn−xm)dω = E[ζω(xn)ζω(x

m)∗] (4)

ζω(x
n)ζω(x

m)∗ is an unbiased expectation of k(x, y) with distribution p(ω). For
the term ejω

T (xn−xm), a real-valued function zω(x
n) =

√
2cos(ωTxn + b) is

suggested to satisfy the expectation condition k(xn, xm) = E[zω(xn)T zω(x
m)],

where ω is i.i.d. samples from p(ω) ∼ N (0, I) and b is sampled uniformly from
[0, 2π]. As such, with {ωk}Dk=1 and {bk}Dk=1, the D-dimensional mapping is:

zRFF (x
n) =

√
2

D

[
cos(ωT

1 x
n + b1); · · · ; cos(ωT

Dxn + bD)
]
∈ RD (5)

Thus, with the mapping zRFF : Rd → RD, the covariance estimate is Σ̂:

Σ̂D = ZDJJ
TZT

D ∈ SPDD
++ where ZD ∈ RD×N (6)

where J = N− 3
2 (NI−1N⊗1N ) is a centering matrix[4], 1N is a column vector of

N ones, ⊗ is matrix outer-product, ZD is a matrix where the columns are stacked
by random Fourier features (5) over image samples. Therefore, one can easily
obtain anisotropic noise/samples from Σ̂D with the Cholesky decomposition[25]:

εA = Lu, Σ̂D = LLT , u ∼ N (0, I) (7)

where L is a lower triangular matrix.
If mapping the low-dimensional sample εA back to the original high-dimensional

space, the scope values of ωTx + b needs to be restricted because the function



6 J. Zhang et al.

Fig. 2. Visual results from infarct lesion segmentations on ASID and Private Infarct

mapping arccos(·) is not invertible or unique in terms of cos(·). The proposed
strategy is to map ωTx + b into R[0,π] as well as it can be. Thus, the sampling
distribution for ω and b are adjusted as N (0, π

4D I) and [π4 ,
3π
4 ] in Eq.(5). The

reverse mapping is represented as:

x̂(εA) ≈ WT
[
arccos

(√D

2
εA,1

)
− b1; · · · ; arccos

(√D

2
εA,D

)
− bD

]
∈ Rd (8)

where W ∈ RD×d is the matrix with entries sampled from N (0, π
4D I). Since the

matrix W is not square and there is no strict inverse matrix, the property of
WTW ≈ Id is used to approximate fit the estimate x̂ as the anisotropic noise.

Table 1. Quantitative Performance on Infarct AISD with Spatial Overlap Metrics

Datasets Infarct AISD Private Infarct
Methods Dice Recall Pre. AUC Dice Recall Pre. AUC

SegResNet[15] 0.425 0.408 0.513 0.750 0.343 0.330 0.443 0.706
UNETR[10] 0.388 0.402 0.435 0.714 0.328 0.327 0.392 0.684

SwinUNETR[9] 0.420 0.394 0.549 0.761 0.366 0.511 0.357 0.668
nnUNet[12] 0.434 0.423 0.508 0.750 0.337 0.360 0.465 0.692

nnUNet++[31] 0.457 0.462 0.534 0.752 0.371 0.398 0.420 0.699
SegDiff[2] 0.462 0.413 0.661 0.705 0.396 0.367 0.649 0.681

MedSegDiff[26] 0.495 0.457 0.656 0.727 0.404 0.360 0.606 0.678
SDPM[11] 0.495 0.448 0.647 0.722 0.420 0.367 0.703 0.681

Our SADPM 0.524 0.530 0.686 0.763 0.453 0.450 0.706 0.725

3 Experiments

3.1 Dataset, Pre-processing and Hyper-parameters Settings

Two datasets were used: 1) A public Infarct AISD segmentation dataset is used,
where 273 Non-Contrast-enhanced CT (NCCT) scans (5 mm slice thickness) of
acute ischemic stroke with the interval from symptom onset to CT less than 24
hours are used for training and validating the model, and the 80 participants
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are used for testing. 2) A private dataset, named Private Infarct, containing
195 AIS patient NCCT scans (5 mm) were included. Of 195 patients, 123 images
were used for training while the remained 72 for testing.

The skulls were removed for NCCT images using the network[16]. Then, the
NCCT images were trimmed to the identical size of 448-by-448 by center crop
along z-axis. Online data augmentations was performed, including adding noise,
rotations, scalings, inplane flipping, etc. The variance schedule βt is the sigmoid
curve[17]. P2 Weighting coefficients during the training is suggested in [5]. The
Adam optimizer is used with the learning rate of 1e-4.

Table 2. Quantitative Performance on Infarct AISD and Private Infarct based on
Segmentation Metrics

Datasets Infarct AISD Private Infarct
Methods HD/HD95 IoU VC VDP HD/HD95 IoU VC VDP

SegResNet[15] 114.8/56.8 0.313 0.451 0.591 177.2/102.5 0.252 0.430 0.670
UNETR[10] 138.6/71.5 0.274 0.516 0.597 182.5/110.5 0.237 0.428 0.672

SwinUNETR[9] 124.8/57.1 0.304 0.585 0.605 185.5/108.1 0.261 0.451 0.488
nnUNet[12] 133.2/65.9 0.316 0.532 0.576 166.5/106.6 0.243 0.427 0.639

nnUNet++[31] 111.1/59.8 0.336 0.531 0.538 184.1/104.6 0.277 0.457 0.602
SegDiff[2] 96.0/47.9 0.343 0.575 0.586 99.6/53.8 0.312 0.542 0.632

MedSegDiff[26] 93.6/45.2 0.373 0.581 0.542 111.8/68.5 0.303 0.450 0.639
SDPM[11] 163.2/46.2 0.370 0.544 0.551 144.9/42.0 0.312 0.557 0.632

Our SADPM 91.5/42.9 0.393 0.603 0.470 89.2/42.3 0.337 0.547 0.543

3.2 Evaluation Metrics

Two types of metrics [20] are included based on spatial overlap and segmenta-
tion index. The spatial overlap metrics include Dice, Recall, Precision (Pre.) and
the area under the ROC curve (AUC) at the pixel-wise level. The segmentation
metrics include Hausdorff distance, Intersection-Over-Union (IoU), Volume Cor-
relation (VC) based on the Pearson product-moment correlation coefficient, and
Volume Difference Percentages (VDP), were used to quantitatively assess the
model prediction performance compared to manual contouring.

3.3 Methods for Performance Comparison

Seven state-of-the-art segmentation methods were used as benchmarks for com-
parisons to verify the efficacy from our proposed method, denoted as SADPM.
The SegResNet method [15] is based on the residual network for segmentation
tasks and it is specially optimized for the medical imaging analysis. The strength
of SegResNet is that the parametric volume of the model is small and can be
trained fast. The UNETR [10] and SwinUNETR methods [9] are based on trans-
former architectures. The nnuNet related methods are the basic U-shaped net-
works with deep supervision implemented in [12]. The nnuNet++ method [31]
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is a nested nnuNet architecture for learning the features for the convolutional
kernels. SegDiff [2] and MedSegDiff [26] are similar with our segmentation model
based on DDPM, but was implemented in totally different ways where the images
are used as conditions during reverse process. SDPM is implemented with the
same segmentation framework as SADPM, but with isotropic noise. In our ex-
periments, the nnuNet++, SegResNet, UNETR and SwinUNETR methods were
implemented by the framework of MONAI (monai.io). SegDiff and MedSegDiff
were implemented by the released code from public. For fair comparisons, all the
models in our experiments were adjusted with the optimal configurations.

4 Results

Visual illustrations on lesion segmentation are shown in Fig.2, which illustrates
that SADPM is able to pick up lesion segmentations accurately, and had supe-
rior performance when compared with the other methods. Quantitative results
in Table.1, 2 show that the proposed SADPM obtained the best performance
overall with respect to the metrics in 3.2 outperforming the models of nnuNet,
nnuNet++, SegRegNet, UNETR, SwinUNETR, SegDiff and MedSegDiff.

Our SADPM obtained the best performance with the key metrics of a mean
dice of 0.524 and 0.453, AUC of 0.763 and 0.725, IoU of 0.393 and 0.337, VC
of 0.603 and 0.547 and VDP of 0.470 and 0.543 in AISD and Private Infarct
datasets, which was better than the other methods for the infarct of stroke
lesion segmentation task.

5 Discussion and Conclusion

The experiments show that the advantages of the proposed SADPM by intro-
ducing an fully probabilistic framework of latent variant model with anisotropic
noises rather than the isotropic noises and some efficient inference mechanism,
making the results more explainable and robust to the segmentation tasks.

It is worth emphasizing that SADPM outperforms not only traditional seg-
mentation methods but also transformer-based approaches and other diffusion
probabilistic models (DDPM) based methods. The mean Dice coefficient, a piv-
otal measure of spatial agreement, demonstrates the superior ability of SADPM
to accurately delineate stroke lesions in non-contrast CT images. The AUC,
IoU, VC, and VDP further affirm the robustness and effectiveness of SADPM,
surpassing the performance of competing models.

This study has several limitations. Firstly, the datasets employed in this re-
search are limited. A larger pool of training samples could potentially enhance
both the segmentation accuracy and its generalizability to diverse datasets. Sec-
ondly, it’s important to note that the final label inference is subtly influenced by
stochastic factors. Obtaining an average prediction based on multiple inferences
is a time-consuming process, presenting a challenge for real-time applications.
Thirdly, generating anisotropic noise within our model is also time-consuming.
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Investigating more efficient methods for noise generation could significantly con-
tribute to optimizing the overall computational efficiency. Lastly, exploring more
advanced label fusion techniques may offer opportunities for further performance
enhancement in segmentation tasks. Addressing these limitations in future iter-
ations of the study could contribute to refining the proposed methodology and
extending its applicability in medical image segmentation [29].

In conclusion, this study introduces a novel approach employing a synchronous
image-label diffusion model facilitated by a latent variable model with anisotrop-
ic Gaussian noise for the segmentation of stroke lesions on non-contrast CT im-
ages. The proposed method exhibits a high level of efficacy through extensive
experiments on two datasets. These findings not only underscore the effectiveness
of the model but also hint at its potential applicability in the crucial task of stroke
lesion volume measurement. The proposed methodology, with the demonstrated
results, holds promise for contributing valuable insights and advancements in
the field of medical image segmentation for stroke diagnosis and prognosis.

Acknowledgements This work was supported in part by the National Key
Research and Development Program of China (2023YFC2410802), the Hubei
Provincial Key Research and Development Program (2023BCB007), the High-
Performance Computing platform of Huazhong University of Science and Tech-
nology and computer power at Wuhan Seekmore Intelligent Imaging Inc.

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Abbasi, H., Orouskhani, M., Asgari, S., Zadeh, S.S.: Automatic brain ischemic
stroke segmentation with deep learning: A review. Neuroscience Informatics p.
100145 (2023)

2. Amit, T., Nachmani, E., Shaharbany, T., Wolf, L.: Segdiff: Image segmentation
with diffusion probabilistic models. arXiv:2112.00390 (2021)

3. Calandriello, D., Lazaric, A., Valko, M.: Distributed adaptive sampling for ker-
nel matrix approximation. In: Artificial Intelligence and Statistics. pp. 1421–1429.
PMLR (2017)

4. Cavazza, J., Zunino, A., San Biagio, M., Murino, V.: Kernelized covariance for
action recognition. In: 2016 23rd International Conference on Pattern Recognition
(ICPR). pp. 408–413. IEEE (2016)

5. Choi, J., Lee, J., Shin, C., Kim, S., Kim, H., Yoon, S.: Perception prioritized
training of diffusion models. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 11472–11481 (2022)

6. Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M.: Diffusion models in vision: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)

7. Fidon, L., Aertsen, M., Kofler, F., Bink, A., David, A.L., Deprest, T., Emam,
D., Guffens, F., Jakab, A., Kasprian, G., et al.: A dempster-shafer approach to
trustworthy ai with application to fetal brain mri segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2024)



10 J. Zhang et al.

8. Frangakis, A.S., Hegerl, R.: Noise reduction in electron tomographic reconstruc-
tions using nonlinear anisotropic diffusion. Journal of structural biology 135(3),
239–250 (2001)

9. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr:
Swin transformers for semantic segmentation of brain tumors in mri images. In:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th
International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021,
Virtual Event, September 27, 2021, Revised Selected Papers, Part I. pp. 272–284.
Springer (2022)

10. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B.,
Roth, H.R., Xu, D.: Unetr: Transformers for 3d medical image segmentation. In:
Proceedings of the IEEE/CVF winter conference on applications of computer vi-
sion. pp. 574–584 (2022)

11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems 33, 6840–6851 (2020)

12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature methods 18(2), 203–211 (2021)

13. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods
on the riemannian manifold of symmetric positive definite matrices. In: proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 73–80
(2013)

14. Mazurowski, M.A., Dong, H., Gu, H., Yang, J., Konz, N., Zhang, Y.: Segment
anything model for medical image analysis: an experimental study. Medical Image
Analysis 89, 102918 (2023)

15. Myronenko, A.: 3d mri brain tumor segmentation using autoencoder regularization.
In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries:
4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI
2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4. pp.
311–320. Springer (2019)

16. Najm, M., Kuang, H., Federico, A., Jogiat, U., Goyal, M., Hill, M.D., Demchuk,
A., Menon, B.K., Qiu, W.: Automated brain extraction from head ct and cta
images using convex optimization with shape propagation. Computer Methods
and Programs in Biomedicine 176, 1–8 (2019)

17. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In:
International Conference on Machine Learning. pp. 8162–8171. PMLR (2021)

18. Nowinski, W.L.: Usefulness of brain atlases in neuroradiology: Current status and
future potential. The Neuroradiology Journal 29(4), 260–268 (2016)

19. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge
university press (2004)

20. Taha, A.A., Hanbury, A.: Metrics for evaluating 3d medical image segmentation:
analysis, selection, and tool. BMC medical imaging 15(1), 1–28 (2015)

21. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., S-
inghal, U., Ramamoorthi, R., Barron, J., Ng, R.: Fourier features let networks
learn high frequency functions in low dimensional domains. Advances in Neural
Information Processing Systems 33, 7537–7547 (2020)

22. Wang, H., Li, X.: Towards generic semi-supervised framework for volumetric med-
ical image segmentation. Advances in Neural Information Processing Systems 36
(2024)



Title Suppressed Due to Excessive Length 11

23. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image
segmentation using deep learning: A survey. IET Image Processing 16(5), 1243–
1267 (2022)

24. Whang, J., Delbracio, M., Talebi, H., Saharia, C., Dimakis, A.G., Milanfar, P.:
Deblurring via stochastic refinement. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 16293–16303 (2022)

25. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2.
MIT press Cambridge, MA (2006)

26. Wu, J., Fang, H., Zhang, Y., Yang, Y., Xu, Y.: Medsegdiff: Medical image segmen-
tation with diffusion probabilistic model. arXiv:2211.00611 (2022)

27. Xing, Z., Ye, T., Yang, Y., Liu, G., Zhu, L.: Segmamba: Long-range sequential mod-
eling mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560
(2024)

28. Yang, R., Yang, Y., Zhou, F., Sun, Q.: Directional diffusion models for graph
representation learning. Advances in Neural Information Processing Systems 36
(2024)

29. You, C., Dai, W., Min, Y., Liu, F., Clifton, D., Zhou, S.K., Staib, L., Duncan,
J.: Rethinking semi-supervised medical image segmentation: A variance-reduction
perspective. Advances in Neural Information Processing Systems 36 (2024)

30. Yue, Z., Wang, J., Loy, C.C.: Resshift: Efficient diffusion model for image super-
resolution by residual shifting. In: Thirty-seventh Conference on Neural Informa-
tion Processing Systems (2023)

31. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested
u-net architecture for medical image segmentation. In: Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: 4th In-
ternational Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS
2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20,
2018, Proceedings 4. pp. 3–11. Springer (2018)


