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Abstract. Multimodal large language models (MLLMs) have been ex-
plored in the Chinese medical domain for comprehending complex health-
care. However, due to the flaws in training data and architecture de-
sign, current Chinese medical MLLMs suffer from several limitations:
cultural biases from English machine translations, limited comparative
ability from single image input and difficulty in identifying small lesions
with low-resolution images. To address these problems, we first introduce
a new instruction-following dataset, Chili-Joint (Chinese Interleaved
Image-Text Dataset for Joint Diagnosis) collected from the hospital in
mainland China, avoiding cultural biases and errors caused by machine
translation. Besides one single image input, Chili-Joint also has multi-
ple images obtained at various intervals during a patient’s treatment,
thus facilitating an evaluation of the treatment’s outcomes. We further
propose a novel HiA (High-resolution instruction-aware Adapter) to in-
corporate high-resolutioninstruction-aware visual features into LLMs to
facilitate the current MLLMs to observe the small lesions as well as
the comparative analysis. Extensive experiments on Chili-Joint demon-
strate our HiA can be a plug-and-play method to improve the perfor-
mance of current MLLMs for medical analysis. The code is available at
https://github.com/xmed-lab/HiA.
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1 Introduction

The recent surge in Large Language Models (LLMs) development, exemplified by
GPT4 [21], Vicuna [5] and LLama [25], has revolutionized language tasks through
advanced algorithms and massive data sets. This innovation has extended into
multimodal large language models (MLLMs) [13,18,31,7,2,6,14,10,15,22], inte-
grating visual data to enhance language understanding. Some researchers have
explored the potential to apply MLLMs to the medical domain. For exam-
ple, LLaVA-Med [12] and MedVInT [32] enhance medical visual instruction by
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leveraging PubMed Central’s captions [24], while Med-Flamingo [20] and Med-
BLIP [3] innovate in medical visual question answering, extending to 3D data
analysis like MRI. Med-PaLM M [26] and RadFM [29] streamline multiple tasks,
enhancing medical AI’s scope and efficiency.

To address the limitation of English-centric models in Chinese medical ap-
plications, Qilin-Med-VL [19], the pioneering Chinese medical MLLM, was de-
veloped to analyze both textual and visual medical data. This model, refined
through a two-phase training on extensive Chinese visual-text pairs, excels at
producing medical captions and resolving intricate medical inquiries in Chinese.
Nonetheless, Qilin-Med-VL and similar Chinese MLLMs face challenges due to
training data and design issues. Firstly, the reliance on ChiMed-VL [19], a dataset
translated from English by GPT-3.4, raises concerns about biases and errors
introduced during translation, potentially compromising model reliability. Addi-
tionally, the current focus on single-image input restricts the models’ diagnostic
capabilities, overlooking the clinical need for comparing multiple radiographic
images to assess treatment outcomes effectively.

To handle the drawbacks of current Chinese medical multimodal datasets, we
introduce a new dataset Chili-Joint (Chinese Interleaved Image-Text Dataset
for Joint Diagnosis). Chili-Joint has two important advantages. First, the image-
text pairs in Chili-Joint are collected from one top tertiary hospital in mainland
China, which avoids cultural biases and errors caused by data machine-translated
from English. Second, our Chili-Joint has interleaved vision language context;
all samples contain sequences of inter-related images and texts, e.g., X-rays ob-
tained at various intervals during a patient’s treatment and corresponding de-
scriptions. This enables the comparison across different periods, thus facilitating
an evaluation of the treatment’s outcomes.

By evaluating our proposed Chili-Joint, we find that current MLLMs (both
medical and general domain) fail to detect small lesions and conduct the com-
parative analysis of images from different periods, which may caused by two rea-
sons. ❶ Low-resolution input. Due to the data, memory and computation cost
limitations, prevalent methods invariably input images with a small size (i.e.,
336 × 336) for training [12,34]. However, the lesions often occupy only a small
portion of the entire image, making it challenging to observe in low-resolution
pictures [1], leading to diagnostic errors (see Fig. 1 (a)). ❷ Instruction-agnostic
visual extraction. Current MLLMs use a pre-trained connector layer, e.g., Q-
Former [13], to extract and translate visual features into tokens recognizable by
LLMs. However, this pre-trained lightweight layer is instruction-irrelevant and
pre-trained on image-caption pairs, thus tending to the primary visual contents
which are just enough for the captioning task, but omit other visual details, i.e.,
changes in lesions across different periods (see Fig. 1 (b)).

To address the above problems, we propose a lightweight HiA (High-resolution
instruction-aware Adapter) which can efficiently enable the current Chinese
medical MLLMs to receive multiple high-resolution images and conduct a com-
parative analysis for evaluating the effect of therapy (see Fig. 1). Specifically, HiA
consists of three components: a high-resolution visual encoder to produce high-
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CN:可见关节诸骨骨质完整，骨小梁显示清晰，无明显异常。
EN: The visible bones of the joint are intact, and the trabecular bone is clearly visible without any obvious abnormalities.Qilin-Med-VL
CN:右侧股骨下段可见片状低密度影。膝关节间隙未见变窄。
EN: A flake-like low-density shadow can be seen in the lower segment of the right femur. No narrowing of the knee joint space.Ours

CN: <image>此图是否有异常?
EN: <image> Whether any abnormality in this image? 

CN: <image>和 <image>分别是患者第一次检查的图片和经过手术治疗后的图片,请对比两张图片。
EN: <image> and <image> depict the patient‘s condition before and after surgical treatment, respectively. Please compare
two images.

CN:第一张为左侧X光图像,显示骨质边缘增生、硬化。第二张为左侧膝盖的X光图像,显示骨质边缘增生、硬化。
EN: The first image is an X-ray of the left side, showing bone edge proliferation and hardening. The second …. hardening.Qilin-Med-VL

CN:第一张显示左膝关节骨质边缘增生,硬化….。第二张相比第一张,增生,硬化等情况减弱,表明左侧膝关节术后改变。
EN: The first image shows proliferation and hardening of the bone edges at the left knee joint ……. the second image shows a 
reduction in proliferation and hardening, indicating post-operative changes in the left knee joint.

Ours

Ground truth CN:右侧股骨下段髌骨投影区可见片状低密度影。
EN: A flake-like area of low density can be seen in the projection area of the patella in the lower segment of the right femur.

CN:第二张相比第一张,左侧骨质边缘增生,硬化,髁间隆起变尖等程度减弱，表明左侧膝关节术后改变。
EN: Compared to the first image, the second one shows a decreased extent of osteophyte formation, sclerosis, and sharpening 
of the intercondylar eminence on the left side, indicating post-surgical changes in the left knee joint.

Ground truth

(a) Small Lesions

(b) Comparative Diagnosis

Fig. 1: (a) Small lesions. Due to the low-resolution input, small lesions (red
box) can not be diagnosed by the current MLLM SOTA [19]. (b) Comparative
Diagnosis. Since the instruction-agnostic visual extraction of connector layer,
current methods fail to follow the instruction to conduct comparative diagnosis.
Benefit from HiA, our method can accurately produce correct responses based
on the instruction (see red words).

resolution visual features from high-resolution input, an instruction-aware ex-
tractor to capture instruction-related visual information from high-resolution fea-
tures, and an injection module to inject the instruction-related visual informa-
tion into LLMs for better understanding. Notably, our proposed HiA is training-
efficient and plug-and-play to be applied to existing MLLMs. We freeze all pa-
rameters of current MLLMs and only fine-tune the HiA during the training stage.
We conduct experiments on Chili-Joint and prove HiA can be a plug-and-play
method to benefit current MLLMs for medical analysis.

2 Method
As shown in Fig. 2, our overall pipeline consists of two parts: a multimodal
large language model (MLLM) (Section 2.1) and new proposed high-resolution
instruction-aware adapter (HiA) (Section 2.2).

2.1 Existing Multimodal Large Language Model

Current medical or general MLLMs, e.g., Qilin-Med-VL [19] or LLaVA [12],
generally consist of four parts: a vision encoder, a connector, a tokenizer and a
large language module, which are introduced briefly in the following. Note that
we will show two images in each pair for illustration. More images can also be
processed similarly.
Visual Encoder. The visual encoder of the MLLMs is generally the plain ViT
initialized from CLIP [23], which has pre-trained on massive image-text pairs.
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(a) Overall Pipeline
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并对治疗效果进行评价。
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Fig. 2: Besides a general MLLM, which handles low-resolution image-text pairs
(blue pathways), we also introduce a compact HiA mechanism (orange pathways)
to improve MLLMs for comparative medical image analysis. The HiA module
extracts visual information relevant to the instructions using an instruction-
aware extractor and then incorporates this information into the MLLM through
an injection module.

Formally, given the input images Ii and Ij , the vision encoder produces the
corresponding visual features Fi and Fj respectively.
Connector Layer. The lightweight connector layer has two purposes: (i) trans-
late Fi into tokens V0

i recognizable by LLMs and (ii) capture and compress the
long visual features to fixed shorter ones. The connector is trained on millions
of image-caption pairs by feeding the generated visual tokens, i.e., V0

i , into a
frozen LLM which generates the corresponding captions. Considering the com-
putation and hardware cost, the size of the input image is in low-resolution, e.g.,
generally up to 336× 336.
Tokenizer. The tokenizer aims to map the input text instructions to token
embeddings, i.e., H0, that are following fed into the LLM.
Large Language Model (LLM). As shown in Fig. 2 (a), before fed into the
LLM, V0

i,j and H0 are concatenated into a 1D sequence, formulated as follows:

{h0
1,h

0
2, . . . ,v

0
i1, . . . ,v

0
ik, . . . ,v

0
iK︸ ︷︷ ︸

V0
i

, . . . ,h0
n, . . . ,v

0
j1, . . . ,v

0
jK︸ ︷︷ ︸

V0
j

, . . . ,h0
N}, (1)

where v0
ik is the k-th token in V0

i and h0
n is the n-th tokens in H0. In this paper,

we follow Qilin-Med-VL [19] to use a renowned Chinese LLM, Chinese-LLaMA2-
13B-Chat, as our pre-trained LLM.

2.2 High-Resolution Instruction-Aware Adapter

The high-resolution instruction-aware adapter (HiA) aims to capture high-
resolution instruction-related visual information for MLLMs. Specifically, we first
use a high-resolution visual encoder transfers the high-resolution images, i.e.,
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Ii and Ij , into visual features Zi and Zj . The high-resolution visual encoder
consists of several CNN [11] layers, which are more lightweight and training-
efficient to handle dynamic resolutions of input, compared with the plain ViT [9]
of MLLMs [4,8].

Given the high-resolution visual features and outputs from LLMs (includ-
ing low-resolution visual tokens and textual tokens), HiA uses an instruction-
aware extractor to capture instruction-related visual information from high-
resolution features. Then, an injection module is adopted to incorporate the
instruction-related visual information into LLMs for understanding and reason-
ing. We detail the instruction-aware extractor and the injection module in the
following for Vl

i, and so do as Vl
j .

Instruction-Aware Extractor. We denote the output from the l-th layer of the
LLM as {hl

1,h
l
2, . . . ,Vi, . . . ,h

l
n, . . . ,V

l
j , . . . ,h

l
N}, where Vl

i = {vl
i1, . . . ,v

l
iK} ∈

RK×D1 and Vl
j = {vl

j1, . . . ,v
l
jK} ∈ RK×D1 . As shown in Fig. 2 (c), we extract

the last token hl
N ∈ R1×D1 that can fully perceive the whole multimodal context

during the first l layers and contains comprehensive instruction-aware semantics.
Next, we obtain a set of learnable instruction-aware queries by:

Q = Q+ Linear(hl
N ), Q ∈ RM×D, Linear(hl

N ) ∈ R1×D. (2)

Finally, we use a cross-attention block, where Q as the query, high-resolutionvisual
features Zi as the value and key, to obtain Z

l

i ∈ RM×D, which can be formulated
as Z

l

i = CrossAtten(Q,Linear(Zi)). In this way, Z
l

i would contain more infor-
mation related to the instructions. For example, given the instructions ‘assess
the effectiveness of treatment’, the model would focus more on the lesion differ-
ence between two images to conduct an assessment, while the connector layer in
existing MLLMs tends to capture the salient information.
Injection Module. After obtaining the instruction-related features Z

l

i, we use
the injection module to interact the information between Z

l

i and Vl
i by V

l

i =

CrossAtten(Vl
i,Z

l

i), where V
l

i ∈ RK×D1 . Finally, we feed the addition, i.e.,
V

l

i +Vl
i, into the l + 1-th layer of the LLM. See Fig. 2 (d) for details.

Note that we only fine-tune the newly introduced high-resolutionvisual en-
coder and HiA, and keep other parameters of MLLMs frozen for data and train-
ing efficiency. Compared with previous MLLMs towards high-resolution input [8],
our HiA considers challenges in medical images, e.g., comparative, instruction-
related extraction.

3 Experiments

Dataset. Prior work, such as Huatuo-26M [27] and Qilin-Med-VL [19], found
that translating from English introduces biases and inaccuracies, compromising
robustness. We collect our dataset, i.e., Chili-Joint, from our collaborating hospi-
tals for the native Chinese dataset. There are totally 14K interleaved image-text
pairs are randomly split into training, validation and testing set at 7 : 1.5 : 1.5
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Description 

Disease 

Com-

parative

Location 

32%

30%

23%

9% Description 
CN: <image>请描述此医学影像中
的内容
EN: <image>Please describe what is 
in this medical image

Disease
CN: <image>这张图片中是否有骨
质增生?
EN: <image>Is there any bone 
growth in this picture?

Location

Comparative

(a) Proportions of  tasks (b) Examples

CN: <image>这张图片中什么部位有骨
质增生
EN: <image> Where is the bone 
hyperplasia in this picture?

CN: <image>和 <image>是患者两次检
查的图片,请对比两张图片。
EN: <image> and <image> are pictures of 
the patient‘s two examination. Please
compare them. 

Fig. 3: (a) Proportions of tasks. The size of the arc represents the proportions
of each task. (b) Examples of different tasks. For clarity, we only show
instructions, omitting the responses.

ratio. We construction four different tasks, i.e., Description, Disease, Location
and Comparative, as shown in Fig. 3 (a). The detailed examples for each task
are illustrated in Fig. 3 (b).
Implementation Details. We use Qilin-Med-VL [19]1 as our baseline MLLM,
which uses Chinese-LLaMA2-13B-Chat2 as the foundation LLM and Clip-ViT-
large-patch14-336 [23]3 as the pre-trained image encoder. Chinese-LLaMA2-13B-
Chat is an open-source transformer-based LLM with 13 billion parameters fur-
ther trained on Chinese-LLaMA2-13B and optimized for conversation scenar-
ios. Clip-ViT-large-patch14-336 is a pre-trained CLIP vision encoder trained by
OpenAI. The number of learnable instruction-aware queries is set to 256 (see
Table 4a for ablation study). We select two layers of the LLM (L/3 and 2L/3)
to use our HiA (see Table 4b for analysis). As for the vision-language instruction-
tuning stage, we use the following settings: batch size = 4 per GPU, one epoch,
learning rate = 2e− 5, warmup ratio = 0.03, and max length = 2048.
Evaluation Metrics. To evaluate the generated response based on the instruc-
tions, we use standard caption metrics [28,30,33,16], i.e., BLEU-4 (B4), ME-
TEOR (M) to compare the consistency between the predictions from models
and ground-truth.

3.1 Comparison with the State-of-the-Art Methods

To evaluate our proposed HiA, we select four state-of-the-art MLLMs including
natural domain (i.e., MiniGPT-4 [34] and LLaVA-1.5 [17]) and medical domain
(i.e., LLaVA-Med [12] and Qilin-Med-VL [17]). Among them, Qilin-Med-VL [17]
is pre-trained on the Chinese medical multimodal dataset. For fair evaluation,
all models are fine-tuned on the training set of Chili-Joint, select the model that
achieving the best performance on the validation set, and report the performance
on the test set on Table 1.

We observe two findings from Table 1. (i) Pre-training on medical data is
essential, i.e., models pre-trained on medical data outperform those not pre-
trained. For example, the average performance of LLaVA-Med and Qilin-Med-
VL across all tasks is 35.1 and 37.7, respectively, exceeding that of MiniGPT-4
1 https://github.com/williamliujl/Qilin-Med-VL
2 https://github.com/LlamaFamily/Llama-Chinese
3 https://huggingface.co/openai/clip-vit-large-patch14-336
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Description Disease Location ComparativeMethod B4 M B4 M B4 M B4 M AVG

MiniGPT-4 [34] 38.5 28.7 36.7 23.6 29.2 18.8 32.6 20.9 28.6
+ HiA 41.2 30.4 44.5 31.3 36.7 23.8 39.5 26.0 34.2

LLaVA-1.5 [17] 39.6 29.9 37.5 24.2 30.1 18.9 33.8 21.3 29.4
+ HiA 43.1 31.1 44.7 34.9 37.5 24.2 41.3 28.8 35.7

LLaVA-Med [12] 48.4 34.3 42.7 30.7 35.2 23.8 36.9 28.5 35.1
+ HiA 53.2 37.2 47.8 36.3 40.8 29.0 39.2 32.4 39.5

Qilin-Med-VL∗ [19] 51.4 38.5 44.6 33.2 38.7 26.8 37.8 30.7 37.7
+ HiA 54.8 40.6 49.5 38.6 43.9 28.0 42.5 33.5 41.4

Table 1: Comparison with the state-of-the-art on Chili-Joint. For all
metrics, the higher the scores, the better the results. ‘B4’ and ‘M’ refer to BLEU-
4 and METEOR. ‘AVG’ is the average value of all metrics on both two dataset.
∗ indicates the model is pre-trained on Chinese medical multimodal data. Note
that all models are fine-tuning on Chili-Jointin the same setting.

and LLaVA-1.5, which is 28.6 and 29.4. (ii) Our proposed HiA yields significant
improvements for all models across all tasks. For instance, in terms of average
performance, HiA achieves improvements of 5.6, 6.3, 4.5, and 3.7 compared to the
four state-of-the-art models (MiniGPT-4, LLaVA-1.5, LLaVA-Med, and Qilin-
Med-VL), respectively.

3.2 Ablation Study

In this section, we conduct the ablation study to evaluate the effectiveness of
the proposed modules in HiA. We use Qilin-Med-VL [19] as our baseline model.
Effect of different proposed modules. Our HiA model outperforms existing
MLLMs by incorporating two novel types of information: instruction-related
visual features and high-resolution (HR) features. To assess HiA’s impact, we use
Qilin-Med-VL equipped with our HiA as a full model and conducted a series of
experiments by systematically removing each component. Specifically, ‘w/o IA’
means that we remove the last token hl

N (Eq. 2) from the learnable instruction-
aware queries, thus ignoring the instruction semantics. ‘w/o HR’ indicates that
we set the resolutions of high-resolution images to 336, equal to low-resolution
images. The comparative analysis, summarized in Table 2, yielded two primary
insights: (i) IA would not degrade the description task too much, since the
original connector is trained to handle description-related tasks. IA module can
capture more useful information; without IA, the performance of the other three
tasks would degrade clearly. (ii) Without HR, the model fails to detect small
lesions, resulting in descriptions that overlook these lesions and consequently
degrade performance (also see Fig. 1 (a)).
Comparison of the baseline and ours across different resolutions. An
intuitive way to enhance the perception ability is to increase the resolution of in-
puts, i.e., inputs of varying resolutions are fed into the baseline and our method,



8 Y. Lin et al.

Method Des Dis Loc Com
Full 54.8 49.5 43.9 42.5
w/o IA 53.1 45.6 38.9 38.8
△ -1.7 -3.9 -5.0 -3.7
w/o HR 51.6 44.8 42.3 41.6
△ -3.2 -4.7 -1.6 -0.9

Table 2: The ablation study of
different proposed modules. ‘Des’,
‘Dis’, ‘Loc’ and ‘Com’ indicate the De-
scription, Disease, Location and Com-
parative tasks. ‘IA’ and ‘HR’ indicate
using instruction-aware tokens and
high-resolution input, respectively. △
is the difference between SOTA with
and without our HiA.

Res. Memory FLOPs AVG
448 30.8 / 29.6 46.8 / 15.8 37.7 / 39.6
560 31.3 / 29.9 85.5 / 16.2 38.0 / 40.8
672 % / 30.1 105 / 16.5 %/ 41.4
784 % / 30.3 162 / 16.7 % / 41.5
896 % / 30.4 208 / 16.8 % / 41.5

Table 3: Comparison of the memory
cost and flops between the base-
line and our method. % indicates
the results cannot be obtained caused
of out-of-memory. ‘Res.’ means the im-
age resolution of high-resolution images.
The results of the baseline model and
our HiA are reported as red and blue
respectively.

M Des Dis Loc Com
128 52.6 46.9 41.3 40.4
256 54.8 49.5 43.9 42.5
512 54.6 49.5 44.0 42.0

(a) M in Eq. 2 (Length of learnable
instruction-related queries Q).

Num Des Dis Loc Com
1 52.1 45.8 41.2 39.9
2 54.8 49.5 43.9 42.5
3 54.2 49.0 43.4 41.8

(b) Number of layers of LLM incorpo-
rated with HiA.

Table 4: Ablation on different designs in HiA. Default settings are marked
in gray .

respectively. To further study the effectiveness of our proposed HiA, we conduct
experiments to compare the baseline and our method across different resolution
inputs in Table 3. From the table, we can see that as the input image resolution
increases, the memory cost and FLOPs of the baseline model grow proportion-
ally, and would be out-of-memory when the input size rises to 672× 672. Differ-
ently, benefiting from HiA, our approach outperforms the baseline model while
using much less computation and memory cost.
Effect of Different Designs. In our investigation detailed in Table 4, we exam-
ine the impact of varying design parameters: the length of learnable instruction-
related queries (M) and the number of layers of LLM incorporated with HiA. Ta-
ble 4a demonstrates that as the number of query tokens increases, the instruction-
aware extractor would capture more useful information from high-resolution in-
put, e.g., M = 256 outperforms M = 128. However, too many query tokens, e.g.,
512, would bring more noise as well as computation cost, degrading the perfor-
mance. Table 4b analyzes the effect of the different numbers of layers in the LLM
to be injected with HiA. Specifically, Num = 1, Num = 2 and Num = 3 mean
that we incoporated HiA in layer {L/2}, {L/3, 2L/3} and {L/4, 2L/4, 3L/4}
respectively, where L is the total layer number of the LLM. Results show that
incorporating HiA into two layers achieves the best performance.
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4 Conclusion

In this paper, we propose a new dataset Chili-Joint (Chinese Interleaved Image-
Text Dataset for Joint Diagnosis), featuring image-text pairs from a leading
tertiary hospital in China to mitigate cultural biases and enable comparative
analysis of treatment through interrelated images and descriptions. We introduce
HiA, a lightweight adapter that enhances Chinese medical MLLMs’ ability to
analyze multiple high-resolution images for therapy evaluation. HiA, designed
as a plug-and-play, training-efficient component, significantly improves medical
MLLMs for medical analysis. Our current dataset is limited to X-ray images,
and we plan to expand it by including more diverse modalities like CT and MRI
in the future.
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