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Abstract. In accelerated magnetic resonance imaging (MRI) reconstruc-
tion, the anatomy of a patient is recovered from a set of under-sampled
measurements. Currently, unrolled hybrid architectures, incorporating
both the beneficial bias of convolutions with the power of Transformers
have been proven to be successful in solving this ill-posed inverse prob-
lem. The multi-scale strategy of the intra-cascades and that of the inter-
cascades are used to decrease the high compute cost of Transformers and
to rectify the spectral bias of Transformers, respectively. In this work, we
proposed a dynamic Hybrid Unrolled Multi-Scale Network (dHUMUS-
Net) by incorporating the two multi-scale strategies. A novel Optimal
Scale Estimation Network is presented to dynamically create or choose
the multi-scale Transformer-based modules in all cascades of dHUMUS-
Net. Our dHUMUS-Net achieves significant improvements over the state-
of-the-art methods on the publicly available fastMRI dataset.

Keywords: MRI acceleration · Unrolled architecture · Multi-scale strategy ·
Dynamic network

1 Introduction

Magnetic Resonance Imaging (MRI) as a non-invasive approach is a powerful di-
agnostic tool compared to competing modalities like CT or X-Rays. However, the
MRI data acquisition process is inherently slow. Accelerated MRI [17] addresses
this challenge by taking fewer measurements in k -space and thus reducing the
time patients need to spend in the scanner. However, recovering the underlying
anatomy from undersampled data is an ill-posed problem as measurements are
less than unknowns.
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Recently, Deep Neural Networks (DNNs) have been successfully used in im-
age segmentation [20,3], registration [5], and reconstruction [11,2]. Compared
to traditional compressed sensing methods, DNNs enabled higher quality recon-
struction under higher acceleration rates. Most of the advanced DNN methods
[21,7,32,28,22,25,13,30] adopt the deep unrolled architecture (DUA). A typical
DUA is composed of several sequentially cascaded subnets, also called cascades
[22], each of which ends with a data consistency (DC) layer [21] and acts as a re-
finement step to the final reconstruction [14]. The DC layers are very important
to avoid losing or corrupting the sampled k -space data in the inputs after long-
distance forward mapping. Therefore, the cascades in DUAs are usually very
small, focusing only on the local features and having limited receptive fields [9].

With the emergence of Transformers [16,15], the limited receptive-field issue
of unrolled models are well addressed [4,10,9,33,6]. However, MRI images have
typically significantly higher dimension (e.g., 640× 368 in [31]) than commonly
used images, posing a significant challenge to contemporary Transformer-based
models. As far as we know, HUMUS-Net [4] is the only Transformer-based model
fully considering the issue incurred by the large-size input. HUMUS-Net extracts
local-range features via using convolutions in high-dimensional space whereas
extracts the long-range features via the Transformer blocks in low-dimensional
space. To make the Transformer blocks perform well in low-dimensional space as
far as possible, a U-Net-like multi-scale encoder-decoder architecture is adopted.
Under this architecture, the large-size input can be progressively downsampled in
the encoder path, and the multi-scale outputs in the encoder path can be passed
to the decoder via long skip connections. This design can avoid information loss
caused by downsampling as much as possible.

Note that ReconFormer [6], a very recent Transformer-based unrolled method,
also utilizes a multi-scale strategy for MRI reconstruction. However, Recon-
Former downsamples the input image by using only one step large-stride convo-
lution in a cascade. Thus, the downsampling rate is limited. Moreover, Recon-
Former varies the feature scales between cascades in a coarse-to-fine pyramid
manner. The pyramid structure was first applied in PC-RNN [1], the cham-
pion model of the 2019 fastMRI Challenge, and is very import to rectify the
low-frequency bias [19] of convolutions.

While the multi-scale strategy used in HUMUS-Net [4] lies in the intra-
cascades in a U-shape style, the multi-scale strategy used in ReconFormer [6]
or PC-RNN [1] lies in the inter -cascades in a pyramid manner. The two multi-
scale strategies have their own benefits but have not been combined together for
Transformer-based MRI reconstruction. In this work, we redesign the HUMUS-
Net by incorporating the two multi-scale strategies and propose a dynamic
Hybrid Unrolled Multi-Scale Network (dHUMUS-Net) for accelerated MRI re-
construction7. The main challenge of using the pyramid structure is how to esti-
mate the optimal scale for each of the cascades. The existing works [1,6] manually

7 Here, “Hybrid” means the a Transformer-convolutional hybrid operations. Since the
work of Xiao et al. [27], Transformers have been bound with convolutions for vision
tasks.
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set the scales for all cascades according to experiences. This might lead to sub-
optimal performance when the acceleration rate or the dataset changes. We will
show that the optimal scale of a cascade mainly depends on the level of the re-
peated features, or the repetition level (RL), in the input image, and a large RL
tends to require a large downsampling scale. We present a novel Optimal Scale
Estimation Network (OSEN) to estimate the optimal scale of a given cascade as
per the RL of the input image. Our dHUMUS-Net is designed by putting OSEN
ahead each cascade of HUMUS-Net. Thus, the utilized Transformer modules
can be constructed dynamically according to the prediction of the OSEN. To
the best of our knowledge, this is the first attempt to design a dynamic unrolled
structure for MRI reconstruction. We show through experiments on the fastMRI
dataset that dHUMUS-Net yields higher fidelity reconstructions.

Our contributions are as follows: 1) we propose a dHUMUS-Net by integrat-
ing the merits of the multi-scale strategy of the intra-cascades [4] and that of
the inter-cascades [1,6]; 2) we explore the dynamic construction of the unrolled
Transformer-convolutional hybrid architecture for better reconstruction quality;
and 3) we perform extensive experiments using our model on the fastMRI dataset
and obtain new state-of-the-art results for both the knee and the brain MRIs.

2 Problem Formulation

An MRI scanner obtains measurements of the patient anatomy in k -space via
various receiver coils. The fully sampled k -space data can be obtained via y =
A (x), where x ∈ Cn is the underlying patient anatomy of interest and usually
has a very high dimension, and A is the linear forward operator [31] that first
multiplies by the sensitivity maps and then applies 2D Fourier Transform (FT).
Note that for simplicity, the measurement noise in the forward mapping is omit-
ted. The anatomy image x can be recovered by x = A∗ (y), where A∗ first applies
2D Inverse Fourier Transform (IFT) and then uses the reduce operator [22] to
combine all individual coil images.

To accelerate MRI, only partial k -space data yu is acquired yu =MuA (x) ,where
Mu is a diagonal matrix representing a binary undersampling mask for u× ac-
celeration. As yu is highly undersampled, directly applying A∗ on yu will lead
to a highly aliased reconstruction xu = A∗ (yu) . Deep unrolled architectures
(DUAs) [14,2,10,4,6] are widely used to further perform reconstruction from xu.
However, xu is usually high dimensional and can lead to high compute cost.

Fortunately, we observe that xu is highly compressible. This is because xu is
obtained from the zero-filled undersampled k -space data via using IFT. After
IFT, each zero value in k -space can spread over all pixels of xu and thus results
in a lot of repeated features in image domain. Such a compressibility can extend
to the inputs of the intermediate cascades. In this work, we will explore how to
use the compressibility of the aliased input images and the multi-scale strategies
of the intra- and inter-cascades to boost the reconstruction performance and
efficiency of the Transformer-based DUAs.
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Fig. 1. Overview of the proposed dynamic Hybrid Unrolled Multi-Scale Network
(dHUMUS-Net). The main module is the dMUST, i.e., the dynamic MUST (Multi-
scale residual Swin Transformer), which consists of several MUST-based branches (e.g.,
MUST1, MUST2 and etc.), and will be dynamically constructed during training ac-
cording to the repetition level of the input image estimated by OSEN.

3 Method

The network architecture of the proposed dynamic Hybrid Unrolled Multi-Scale
Network (dHUMUS-Net) is based on the HUMUS-Net [4] and illustrated in Fig.
1. Before delving into dHUMUS-Net, we first briefly introduce the main blocks
of HUMUS-Net. HUMUS-Net consists of T cascades, namely HUMUS-Blocks,
each of which consists of a high-dimension-feature extractor H, a low-dimension-
feature extractor L, a deep-and-low-dimension-feature extractor, namely Multi-
scale residual Swin Transformer (MUST), and a reconstruction operator R.
Note that H, L and R are convolutional blocks (ConvBlocks), whereas MUST
is a Transformer-convolutional hybrid module. The main process in Cascade t
can be written as follows

Ht = Ht (x̃t−1) (1)
Lt = Lt (Ht) (2)
Dt = MUSTt (Lt) (3)
x̂t = x̃t−1 +Rt (Ht,Dt) , (4)

where x̃t−1 = A∗ (ỹt−1) is the reduced reconstruction result of Cascade t−1 and
we use the subscript t to denote the outputs or operators from Cascade t.
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As shown in Fig. 1, dHUMUS-Net differs from HUMUS-Net by replacing the
operation of Eq. (3) with

st = OSEN (x̃t−1) (5)
Dt,st = dMUSTt (st, Lt) . (6)

We next illustrate dMUST and OSEN, respectively.
dMUST (Dynamic MUST). HUMUS-Net fixes the configuration of the

MUST module but neglects that the repetition level (RL) of the inputs to the
cascades might reduce with the increase of the cascading depth. This requires the
maximum downsampling scale, called max-scale, of the MUST module should be
also adjusted to adapt to the input data. Accordingly, we propose the dMUST
module, which can be defined as follows

dMUST (s, L) ,


MUST1 (L) if s = 1

MUST2 (L) if s = 2

MUST4 (L) if s = 4

MUST8 (L) if s = 8

, (7)

where MUSTs denotes the MUST module with the max-scale s. Note that the
max-scale of a MUST module can only be 2n (n is a non-negative integer) due
to the definition of the downsampling operator, PatchMerge [4], used in the
encoder path. In Eq. (7), we limit the candidate max-scales to be in the set
SMS = {1, 2, 4, 8}. The max-scales in SMS is set to be ≤ 8 because for the
highest 8× acceleration rate used in this work, setting max-scales ≤ 8 is enough
to reduce the RL of the input images.

OSEN (Optimal Scale Estimation Network). Given an input image,
OSEN uses its RL to estimate the optimal downsampling scale that can be
used by dMUST to dynamically create or choose a MUST branch. The mapping
relationship between the RL and the optimal scale is non-trivial. Inspired by
the universal approximation power of DNNs [8], we propose to design the map-
ping function as a neural network. Suppose we have a set of training samples

Γ =

{(
x
(i)
u , x(i)

)∣∣∣r
u=r/2

}N

i=1

, where r is the target acceleration rate, and the

acceleration rates of the training samples range from r/2 to r to ensure that the
possible RLs of the outputs of all cascades can be covered as far as possible. For
training, we should further quantify the RL and label the optimal scale for each
of the training sample in Γ .

Quantify the RL. As the repeated features are globally distributed in the
whole image, we decompose the input image into several sub-images by using
the pixel-unshuffle (PU) operator [26] and measure the RL by using the SSIM-
based similarities between all PU outputs. Given a PU-factor s (s ≥ 2), the
PU operator can produce s2 outputs and thus leads to a similarity vector vs
consisting of 1

2s
2
(
s2 − 1

)
values. Given a PU-factor set SPU, we represent the

RL of an input image as follows

vRL =
[
v>2 , v

>
3 , · · · , v>|SPU|

]>
. (8)
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Label the optimal scale. We first train four HUMUS-Blocks [4], whose MUST
modules are set to MUST1, MUST2, MUST4, and MUST8, respectively, by
using the training set Γ . We then label each of the training samples as follows

s
(i)
Opt = arg max

s∈SMS

SSIM
(
HUMUSs

(
x(i)u

)
, x(i)

)
, (9)

where HUMUSs denotes the HUMUS-Block configured with MUSTs, and SSIM
(Structural Similarity Index Measure) is used to evaluate the reconstruction
performance. Note that the MUST modules used in HUMUSs are independent of
those used in dHUMUS-Net, where all MUST modules used in different cascades
should be retrained in an end-to-end manner.

We now have the final training set
{(
v
(i)
RL, s

(i)
Opt

)}N ·(r/2+1)

i=1
. As the similar-

ity vectors vs in v
(i)
RL can be considered as a 1D time series, we use an RNN

(Recurrent Neural Network) to model the mapping from vRL to sOpt.
The design of dMUST optimizes the scale configuration for different in-

puts, making different inputs having different optimal scales go along different
branches of dMUST. However, different branches of dMUST share the same
ConvBlocks in each cascade. This design can not only save network parameters
but also boost the filter diversity due to the benefit of multi-scale training [12].
As well known, filter diversity [23,24] is very important to enhance performance.

4 Experiments

4.1 Datasets and Experimental Setting

We use the knee and brain datasets from fastMRI competition [31]. The knee
dataset has two MRI modalities: proton-density weighting with (PDFS) and
without (PD) fat suppression, and includes single-coil and multi-coil tasks with
973 volumes (34,742 slices) for training and 199 volumes (7,135) for validation.
The raw k -space data are with the matrix of size 640×368 or 640×372. The
brain dataset has four MRI modalities, namely T1, T1POST, T2, and FLAIR,
and only includes multi-coil task with 4,469 volumes (70,748 slices) for training
and 1,378 volumes (21,842 slices) for validation. The raw k -space data have
different sizes, e.g., 768×396 and 640×272. In this work, we only the multi-coil
datasets. We use the Sensitivity Map Estimation (SME) module of E2E-VN [22]
to estimate the coil sensitivity maps used in the forward and reduce operators
in our dHUMUS-Net.

Acceleration rates (AR) are set to 4 and 8. We use equispaced undersampling
masks as they are easier to implement in MRI scanners [22]. The undersampled
k -space data and the zero-filled images are produced according to the illustra-
tion in Section 2. The experimental results on different modalities are reported
separately so that we can see the effects of our method on different tasks clearly.
We use the SSIM as the evaluation metric. Other implementation details can be
found in the supplementary.
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4.2 Ablation Study
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Fig. 2. Ablation study for dHUMUS-Net under various max-scale configurations. We
use the fastMRI multi-coil knee dataset and AR=8.

Two max-scale configuration strategies for dHUMUS-Net should be com-
pared: fixed configuration (FC) and OSEN-based dynamic configuration (DC).
For FC, we choose the four max-scales from SMS. For DC, we need to consider
the mini-batch generation strategy, which suggests that the samples in the two
parts, B(1)s and B(2)s , of a mini-batch Bs should satisfy a certain ratio. We use
OSEN(B(1)s :B(2)s ), specifically, OSEN(1:0) and OSEN(7:3), to represent how the
mini-batch generation strategy cooperate with OSEN.

Fig. 2 plots the comparison results. For FC, we can see from Fig. 2 (b) and
(c) that max-scale=4, instead of max-scale=8, leads to the best performance. It
means that manually setting the max-scales has the risk to lead to sub-optimal
performance. Using OSEN(7:3) rather than OSEN(1:0) can achieve the best
performance on both PDFS and PD. We can see from Fig. 2 (a) that OSEN(1:0)
leads to the best training loss but bad generalization performance. This means
that separating the data samples with different optimal scales into different mini-
batches might make the network performance bias to the data whose optimal
scales are predominant.

4.3 Comparison Study

Table 1. Evaluation results on the validation dataset of fastMRI multi-coil tasks.

AR Method
Knee Brain

PDFS PD T1 T1POST T2 FLAIR

4

PC-RNN 0.9014±0.010 0.9472±0.015 0.9632±0.018 0.9651±0.019 0.9603±0.016 0.9205±0.050
ReconFormer 0.9208±0.013 0.9635±0.016 0.9673±0.018 0.9694±0.017 0.9652±0.023 0.9302±0.046
HUMUS-Net 0.9170±0.015 0.9578±0.012 0.9642±0.019 0.9650±0.019 0.9635±0.015 0.9273±0.047
dHUMUS-Net 0.9286±0.014 0.9693±0.011 0.9723±0.016 0.9763±0.018 0.9695±0.019 0.9373±0.035

8

PC-RNN 0.8623±0.027 0.9125±0.021 0.9401±0.015 0.9532±0.022 0.9422±0.030 0.8984±0.059
ReconFormer 0.8745±0.023 0.9218±0.023 0.9433±0.020 0.9546±0.023 0.9433±0.030 0.9056±0.060
HUMUS-Net 0.8827±0.023 0.9221±0.022 0.9490±0.019 0.9636±0.018 0.9510±0.027 0.9182±0.055
dHUMUS-Net 0.8894±0.022 0.9355±0.019 0.9530±0.013 0.9726±0.015 0.9592±0.019 0.9248±0.048

We compare the proposed dHUMUS-Net with three state-of-the-art meth-
ods based on the unrolled architecture: a CNN-based method, namely PC-RNN
[1], and two Transformer-based methods, including HUMUS-Net [4] and Recon-
Former [6]. The source codes of these methods, except for PC-RNN, can be
available from the websites of the authors. We implemented PC-RNN based on
the source code of CRNN [18].
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(a) Ground Truth (b) Zero-filled (c) PC-RNN (d) ReconFormer (e) HUMUS-Net (f) dHUMUS-Net
A

(a)(a) (b)(b) (c)(c) (d)(d) (e)(e) (f)(f)(a) (b) (c) (d) (e) (f) (f)(f)(f)(e)(e)(e)(d)(d)(d)(c)(c)(c)(b)(b)(b)(a)(a)(a) (f)(e)(d)(c)(b)(a)

(a)(a)(a) (b)(b)(b) (c)(c)(c) (d)(d)(d) (e)(e)(e) (f)(f)(f)(a) (b) (c) (d) (e) (f)(f)(f)(e)(e)(d)(d)(c)(c)(b)(b)(a)(a) (f)(e)(d)(c)(b)(a)

(a)(a) (b)(b) (c)(c) (d)(d) (e)(e) (f)(f)(a) (b) (c) (d) (e) (f)

B

(f)(f)(e)(e)(d)(d)(c)(c)(b)(b)(a)(a) (f)(e)(d)(c)(b)(a)

(a)(a) (b)(b) (c)(c) (d)(d) (e)(e) (f)(f)(a) (b) (c) (d) (e) (f) (f)(f)(e)(e)(d)(d)(c)(c)(b)(b)(a)(a) (f)(e)(d)(c)(b)(a)

(a) (b) (c) (d) (e) (f)

B

(f)(e)(d)(c)(b)(a)

(a) (b) (c) (d) (e) (f) (f)(e)(d)(c)(b)(a)

Fig. 3. Visual comparison of the reconstructed images for AR=8. A/B:
FLAIR/T1POST of brain. The image patches grouped in the large rectangles with
doted lines, solid lines, and double lines, respectively, show that how the aliasing arti-
facts, the very fine-scaled information, and the anatomical structures are dealt with by
the compared methods. More visual comparison can be found in the supplementary.

Table 1 compares the reconstruction performance of the four compared meth-
ods for 4× and 8× accelerations. It is interesting to note that HUMUS-Net is
outperformed by ReconFormer when AR=4 but performs better than Recon-
Former when AR=8. This is mainly because the repetition levels (RLs) of the
input data under AR=4 are much lower than those under AR=8 and the large
max-scales used in HUMUS-Net tend to cause information loss for inputs with
low RLs. Our dHUMUS-Net achieves the best performance on all modalities of
the two fastMRI multi-coil tasks. This can be attributed to the inclusion of the
dynamic modules, OSEN and dMUST, to dynamically adapt to different input
MRI images with different RLs. Also due to the dynamic design, our method can
run well on a machine with 11 GB GPU memory, while HUMUS-Net requires
≥16 GB GPU memory.

Fig. 3 visually compared the reconstruction quality of the compared meth-
ods for 8× accelerations. As can be seen, our dHUMUS-Net can restore more
fine-scaled information and anatomy structures than the other methods. Also,
dHUMUS-Net can well remove the aliasing artifacts produced by HUMUS-Net
(see the image patches in the large dotted rectangle in Fig. 3 A).



Dynamic HUMUS-Net for Accelerated MRI Reconstruction 9

5 Conclusions

We provide a dHUMUS-Net to resolve the high dimension and high repetition
level (RL) issues in MRI reconstruction by incorporating the intra- and inter-
cascade multi-scale strategies into the unrolled Transformer-convolutional hybrid
architecture. OSEN and dMUST are designed for dynamic module selection
according to the RL of the input data. Experiments on the fastMRI dataset
demonstrated the effectiveness of our method. Future work will focus on better
design of the dMUST and make dMUST can be configured with more max-
scales beyond 2n so that the model can better adapt to data. We will also study
the adaption of OSEN on other well-known convolutions-based [28,22,29,1] and
Transformers-based [10,6] unrolled architectures.
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