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Abstract. Recent medical image segmentation methods have started
to apply implicit neural representation (INR) to segmentation networks
to learn continuous data representations. Though effective, they suffer
from inferior performance. In this paper, we delve into the inferior-
ity and discover that the underlying reason behind it is the indiscrim-
inate treatment for context fusion that fails to properly exploit mis-
aligned contexts. Therefore, we propose a novel Implicit-parameterized
INR Network (I2Net), which dynamically generates the model param-
eters of INRs to adapt to different misaligned contexts. We further pro-
pose novel gate shaping and learner orthogonalization to induce I2Net
to handle misaligned contexts in an orthogonal way. We conduct exten-
sive experiments on two medical datasets, i.e. Glas and Synapse, and
a generic dataset, i.e. Cityscapes, to show the superiority of our I2Net.
Code: https://github.com/ChineseYjh/I2Net.

Keywords: Medical image segmentation · Implicit neural representa-
tion · Feature misalignment · Dynamic neural network.

1 Introduction

Segmentation is a fundamental task in medical image analysis. Recent works [15,11]
apply implicit neural representation (INR) to build decoders of segmentation
networks for learning continuous data representations to tackle the drawback of
conventional discrete grid-based data representations. These INR-based decoders
model the segmentation map as a continuous signal field, which extracts a set
of latent codes from the multi-scale feature maps for each continuous input co-
ordinate and feeds them into a neural network, typically an MLP, to output the
signal (Fig. 1b). Nevertheless, all the existing INR-based decoders bring about
feature misalignment phenomenon, i.e. context mismatch among the extracted
multi-scale latent codes caused by naive interpolation, e.g. nearest neighbor (Fig.
1a). Existing studies on feature misalignment argue that the context mismatch
is harmful and directly results in the inferior performance of segmentation mod-
els, thus they design fancy aligning mechanisms in the decoder of segmentation

https://github.com/ChineseYjh/I2Net
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Fig. 1. a) An example of context mismatch occurring at the input coordinate (⋆) in
INR. b) Naive INR-based decoders representing segmentation maps with explicit/static
parameters. c) Our I2Net representing maps with implicit/dynamic parameters, which
is further represented with an explicit/static INR.

models to extract contextually matched features for each grid on the feature
maps to improve performance [17,12,27].

However, we argue that the context misalignment is not always harmful to
model performance. On the contrary, properly exploiting the misaligned contex-
tual latent code is often beneficial for category discrimination in medical images.
For example, a detected context of a large right liver can be exploited as evidence
for raising the probability of detecting a gallbladder or a right kidney, even if
the contexts of the latter are not detected. This suggests that a heterogeneous
contextual code can also indirectly provide valuable inference evidence for the
category discrimination of target coordinates, which we refer to as the implicit
discrimination patterns of the context features. From this perspective, we argue
that the underlying direct reason for the inferior performance of INR-based de-
coders comes from the indiscriminate treatment for contextual latent code
fusion, which makes it difficult for the INRs to learn various implicit discrimina-
tion patterns. Specifically, existing INR-based decoders all adopt a low-capacity
static MLP expecting to aggregate homogeneous contextual codes for input coor-
dinates without considering their inherent difference [15], thus the fitting scope
of their learned static model parameters hardly includes the various implicit
discrimination patterns of contexts, leading to the unexpected misclassification
when INRs encounter heterogeneous contextual codes at the input coordinates.

Therefore, to address the problem, this paper proposes a novel Implicit-
parameterized Implicit neural representation Network (I2Net), to better ex-
ploit misaligned context latent codes by capturing their implicit discrimination
patterns. Specifically, we first propose a high-capacity implicit-parameterized
implicit function with the idea of dynamic networks [10], which dynamically
generates the model parameters of the INR-based decoders based on the context
codes (Fig. 1c), thereby adapting the INRs to various implicit discrimination
patterns of contexts. The dynamic parameters are composed by weighting sev-
eral shared parameter sets with the implicit gates modeled by another vanilla
INR, where each shared parameter set (named as pattern learner, abbr. PL) is
responsible for learning a discrimination pattern and the gates aim to perform
soft selection on these learned patterns. Then, to induce PLs to capture different
discrimination patterns, we further propose novel gate shaping and learner or-
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thogonalization to achieve orthogonal exploitation, which introduces constraints
from the view of implicit gates and PLs respectively. On one hand, gate shap-
ing induces gate distribution to be sharp or smooth by controlling its entropy,
thereby preventing network degeneracy including learning similar gates for PLs
and the “rich get richer” phenomenon. On the other hand, our learner orthogo-
nalization restricts the orthogonality among the gradients of segmentation loss
over PLs to encourage PLs to learn orthogonal patterns.

To summarize, the major contributions are as follows: 1) Different from the
prior, we discover the underlying direct reason for the inferior performance of
INR-based decoders for medical image segmentation, i.e. indiscriminate context
fusion, and propose a novel method, I2Net, to address the problem. 2) For the
first time, we propose a novel implicit-parameterized INR to adapt to various
discrimination patterns of contexts, which is generic and can be directly applied
to other INR-related areas. 3)We further propose novel gate shaping and learner
orthogonalization to induce PLs in our I2Net to capture orthogonal discrimina-
tion patterns. 4) We conduct extensive experiments on two medical datasets of
different modalities, Glas [23] and Synapse [16], to demonstrate the superiority of
our I2Net. We further generalize our I2Net to the generic semantic segmentation
and conduct experiments on Cityscapes [5] to exhibit its superiority.

2 Method: I2Net

2.1 Preliminary

We present our method using 2D cases. Given a medical image I ∈ RCI×H×W ,
the medical image segmentation task aims to predict a segmentation map P ∈
RCP×H×W , where H, W and CI are the height, width, and channel of the
input image I, and CP denotes the number of target classes. Typical INR-based
methods [11,15] represent each segmentation map P with multi-scale feature
maps extracted from an encoder, i.e. {Fi}Ni=1 (N is the number of scale levels),
and a shared static decoding function, which is defined to produce the signal
map P . Given a continuous coordinate p ∈ R2, the signal value is defined as

INR(p,F;Θ) = fΘ

({
z∗i ,p− p∗i

}N

i=1

)
(1)

where F denotes multiscale features {Fi}Ni=1, fΘ is an MLP parameterized by
Θ, z∗i denotes the extracted latent code from p on the i-th feature map, and p∗i
is the coordinate of z∗i .

2.2 Implicit-Parameterized Implicit Function

In contrast to the static-parameterized INR defined in Eq. (1), we propose an
implicit-parameterized INR, whose parameters are dynamically generated by
another INR to adapt to various discrimination patterns of contexts. Inspired by
[10], we compose the dynamic parameters by weighting several shared parameter
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Fig. 2. The framework of I2Net and the detailed design of I2Layer (with K = 4).

sets with the dynamic gates modeled by an INR, hence the signal value at the
coordinate p is defined as

I2Net(p,F) = INR
(
p,F;

K∑
i=1

gi(p,F;Θg)× Θ̂i

)
,

g(p,F;Θg) = σ
(
INR(p,F;Θg)

) (2)

where K is the number of shared parameter sets, Θ̂i is the i-th shared parameter
set (named as pattern learner, abbr. PL), g(·;Θg) outputs a gate vector with a
dimension of K and is parameterized by Θg, and σ(·) is the softmax function.
In implementation, as shown in Fig. 2, our I2Net is built by stacking multiple
I2Layers, each of which is a dynamic fully connected layer whose weight and bias
are dynamically generated by[

W(l)
g ,b(l)

g

]
=

K∑
i=1

gi

[
Ŵ

(l)
i , b̂

(l)
i

]
(3)

where W
(l)
g and b

(l)
g are dynamic weight and bias in the l-th I2Layer, gi is the

i-th component of the gate g, Ŵ
(l)
i and b̂

(l)
i are static weight and bias in the

l-th I2Layer of the i-th PL (Θ̂i).

2.3 Orthogonal Exploitation of Contexts

Our I2Net provides high model capacity to include various discrimination pat-
terns, but we still need to introduce additional constraints for inducing I2Net to
capture those patterns. Since the dynamic parameters are generated with im-
plicit gates and PLs, we design constraint losses from these two perspectives, i.e.
gate shaping loss and learner orthogonalization.

Gate Shaping. We first empirically observe that directly training I2Net is
prone to degenerate solutions where the gating function tends to learn similar
weights for all PLs. As a remedy, we first propose gate instance sharpening loss:

Lgis =
1

B ×Np

B∑
i=1

Np∑
j=1

H
(
g(pj ,Fi; Θ̂g)

)
(4)
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where B is the batch size, Np is the number of coordinate points sampled
on each image during training, and H(·) is the entropy function, i.e. H(p) =
−
∑

k pk ln(pk). Lgis induces gate distribution to be sharp by reducing the en-
tropy of the gate of each coordinate point instance pj , thus preventing the de-
generacy. However, solely utilizing Lgis leads to another degeneracy, i.e. “rich get
richer” phenomenon, where one of the PLs is always picked and others ignored.
Hence we further propose gate expectation smoothing loss:

Lges = −H
( 1

B ×Np

B∑
i=1

Np∑
j=1

g(pj ,Fi; Θ̂g)
)

(5)

which prevents “rich get richer” degeneracy by increasing the entropy of the
expectation of the gate of the coordinate point instance pj . In Eq. (5), we use
the average of the gates of all the sampled points in a batch to approximate the
expectation. With these two losses, I2Net is encouraged to assign high weights to
different PLs when handling different discrimination patterns. Thus, the overall
gate shaping loss is defined as Lgs = Lgis + λgesLges, where λges is a hyperpa-
rameter.

Learner orthogonalization. To induce each PL to specialize in learning dis-
tinct discrimination patterns, we apply gradient-based orthogonal regularization.
The intuition behind this is that moving locally along the direction of the gra-
dient leads to the biggest change in model prediction, while moving orthogonal
to the gradient leads to the least change. Thus, we restrict the gradient of the
segmentation loss over each PL to be orthogonal to each other to induce different
PLs to focus on learning different patterns. Specifically, we first define the unit
vector of the gradient over the i-th PL as ∇i = norm

(
flat(

∂Lseg

∂Θ̂i
)
)
, where flat(·)

is flattening operation, Lseg is segmentation loss, and norm(x) = x
∥x∥ (∥ · ∥ is

Euclidean norm). Then our learner orthogonalization is defined as

Llo =
1

K(K − 1)

∑
1≤i<j≤K

|∇T
i ∇j |2 (6)

In implementation, Llo is applied to weights and biases in the parallel PLs in

a layer-wise manner, thus the loss is defined as Llo =
∑NL

l=1 L
(l)
lo , where NL is

the number of I2Layers. Finally, the total loss for training I2Net is defined as
L = Lseg + λgsLgs + λloLlo, where λgs and λlo are hyperparameters.

3 Experiments

3.1 Experimental Settings

Datasets. a) Glas [23] is a colon histology image dataset for binary gland
segmentation. It provides 165 images of 512×512 resolution, which are split into
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85 images for training and 80 for testing. b) Synapse [16] is a clinical CT image
dataset for multi-organ segmentation, which contains 30 contrast-enhanced CT
scans in 8 abdominal organs with 3779 axial CT images of 512× 512 resolution
in total. We follow [3] to use the split of 18 training cases (2212 axial slices)
and 12 cases for validation. c) Cityscapes [5] is a popular urban scene dataset
for generic semantic segmentation, which contains 19 classes and 5000 finely
annotated images of 1024 × 2048 resolution, which are further split into 2975,
500, and 1525 images for training, validation, and testing respectively.

Evaluation metrics. For the medical datasets, we employ average dice score
(DSC) and average 95% Hausdorff distance (HD95) to evaluate model perfor-
mance. For Cityscapes, we adopt Intersection over Union averaged over classes
(mIoU) for evaluation. The number of float-point operations (FLOPs) and the
number of parameters (#Params) are also employed for efficiency evaluation.

Implementation details. We conduct experiments on one single NVIDIA
RTX 3090 GPU for Glas and Synapse, and four for Cityscapes. We follow Con-
Trans [18], TransUNet [3], and IFA [11] to configure loss function, optimizer,
learning rate scheduler, batch size, crop size, and training epochs (or iterations)
for Glas, Synapse, and Cityscapes, respectively. We follow [11] to sample points
during training, thus Np = H

4 × W
4 . We set λgs, λges, and λlo to 0.25, 0.5, and

0.25, respectively. For Glas and Synapse, I2Net has two I2Layers with a hidden
dimension of 128, and the gate network also has two layers with a hidden dimen-
sion of 128. For Cityscapes, I2Net has four I2Layers with hidden dimensions of
512, 256, and 256, and the gate network has three layers with hidden dimensions
of 256 and 128.

3.2 Results and Analysis

Model scaling by K. We first explore the impact of the critical hyperparam-
eter K on the performance of I2Net. Results are shown in Table 1 in supple-
mentary material. We observe that I2Net achieves excellent performance when
K reaches 3 or 4.

Comparison with aligning methods. To verify that our I2Net indeed better
exploits the misaligned contextual codes, we compare our method against three
groups of methods, i.e. recent INR-based methods (IFA [11], IOSNet [15]), naive
aligning methods (interpolation methods and DeconvNet [20]), fancy aligning
methods (including state-of-the-art methods like AlignSeg [12] and SFNet [17]).
As shown in Table 1, our I2Net achieves the best performance over all the base-
line methods. Moreover, our I2Net brings much fewer overheads to the decoder
than some state-of-the-art aligning methods, i.e. AlignSeg and SFNet. Thus,
our I2Net is a simple but effective method, which achieves a better trade-off
between computational cost and accuracy than all the previous methods. We
further visualize some results in Fig. 3 to show the superiority of our I2Net.
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Table 1. Comparison with different aligning methods on Glas test and Synapse val.
The best results are in boldface and the second best underlined.

Method
Glas Synapse

#Params GFLOPs DSC(%) HD95(mm) #Params GFLOPs DSC(%) HD95(mm) Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

Bilinear Up-sampling 11.24M 10.42 87.98 18.31 15.31M 16.11 73.24 39.06 82.23 63.31 78.92 70.88 89.15 48.21 82.27 70.96
Nearest Neighbor 11.24M 10.42 87.02 18.65 15.31M 16.11 72.44 39.23 82.84 61.83 77.44 70.89 89.77 46.79 82.08 67.89
Deconvolution [20] 12.93M 16.33 87.50 18.15 16.29M 26.48 73.21 37.08 84.41 56.57 80.54 72.93 89.46 49.11 83.40 69.28

UNet [21] 14.33M 10.46 88.99 18.51 17.26M 30.66 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
CARAFE++ [27] 13.81M 24.25 91.64 11.75 17.46M 41.88 76.79 29.02 85.60 67.47 78.88 72.97 92.27 62.53 84.62 70.00
SFNet [17] 22.40M 51.51 92.17 9.33 19.77M 177.73 77.92 29.81 86.43 65.70 82.70 79.85 92.44 56.64 85.66 73.95
AlignSeg [12] 19.13M 68.21 92.31 7.99 21.61M 194.78 77.42 29.6 87.95 63.54 84.13 79.46 94.04 54.45 86.92 68.90

IFA [11] 11.79M 16 90.67 12.52 15.51M 24.32 76.23 32.54 85.84 63.23 80.21 74.00 93.11 53.03 87.71 72.72
IOSNet [15] - - - - 15.49M 23.08 75.56 29.17 85.17 65.49 81.00 75.35 92.79 50.59 84.03 70.02

I2Net (K = 3) 11.40M 12.30 93.91 4.18 17.43M 32.53 79.59 25.99 88.56 66.55 83.99 81.17 94.24 59.10 87.17 75.91
I2Net (K = 4) 11.44M 12.99 93.84 3.55 17.47M 32.99 78.99 28.70 89.44 69.89 83.98 79.90 92.98 55.78 86.71 73.27

Image GT IFA I2Net AlignSeg Image GT IOSNet I2Net AlignSeg

Fig. 3. Qualitative comparison on Glas test and Synapse val. ‘GT’ indicates
groundtruth. In Glas, white pixel denotes positive, black denotes background (neg-
ative), red denotes false positive, and blue denotes false negative.

Comparison with state-of-the-arts. We further compare our I2Net with the
state-of-the-art methods on the Glas test and Synapse val in Table 2. In Glas,
our I2Net achieves the best performance with a simple ResNet-18 backbone over
the advanced CNN-based methods (e.g. AttnUNet [22], PraNet [7]), the ad-
vanced generic semantic segmentation methods with well-pretrained backbones
(e.g. SegFormer [28], SETR-PUP [30]), the Transformer-based methods tailored
for medical data(e.g. Swin-UNet [2], MedT [24]), and the state-of-the-art meth-
ods using hybrid backbones based on Transformer and CNNs (e.g. ConTrans [18],
TransFuse [29]). In Synapse, our I2Net also achieves the best performance over
the advanced CNN-based methods (e.g. ResUNet [6]) and the state-of-the-art
methods with stronger fancy backbones (e.g. MT-UNet [26], UCTransNet [25]).

Ablation studies. To demonstrate the contribution of each component, we
conduct ablation studies on I2Net (K = 3). As shown in Table 3, introducing
implicit parameterization brings a performance boost of about 2% for DSC,
indicating that it is the most critical component of our method. For gate shaping,
solely incorporating Lges or Lgis both bring performance drops to vanilla I2Net,
whereas utilizing them together brings a DSC improvement of about 0.5∼0.7%.
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Table 2. Comparison with the state-of-art methods on Glas test and Synapse val. The
best results are in boldface and the second best underlined.

Glas Synapse

DSC(%) Backbone Method Backbone DSC(%) HD95(mm) Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

88.99 ResNet-18 [21] UNet UNet [21] FCN 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
89.98 ResNet-50 [31] UNet++ V-Net [19] 3D FCN 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
89.02 ResNet-34 [9] CENet UNet++ [31] ResNet-50 76.91 36.93 88.19 68.89 81.76 75.27 93.01 58.20 83.44 70.52
87.68 FCN [22] AttnUNet R50 UNet [3] ResNet-50 74.68 36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92
87.49 DResNet-50 [4] DeepLabV3 AttnUNet [22] FCN 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
91.20 Res2Net-50 [7] PraNet R50 AttnUNet [3] ResNet-50 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

89.73 MiT-B2 [28] SegFormer DARR [8] 3D FCN 69.77 - 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96
88.75 T-Base [30] SETR-PUP ResUNet [6] ResUNet-a 76.95 38.44 87.06 66.05 83.43 76.83 93.99 51.86 85.25 70.13

82.52 GAT [24] MedT MultiResUNet [13] MultiRes-CNN 77.42 36.84 87.73 65.67 82.08 70.43 93.49 60.09 85.23 75.66

88.94 Swin-B [2] Swin-UNet ViT [3] ViT 61.50 39.61 44.38 39.59 67.46 62.94 89.21 43.14 75.45 69.78

90.71 ResNet-34 & MCT [14] MCTrans R50 ViT [3] R50-ViT 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95
89.94 R50-ViT [3] TransUNet TransUNet [3] R50-ViT 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
90.18 ResNet-50 & CCT [25] UCTransNet TransNorm [1] FCN & ViT 78.40 30.25 86.23 65.10 82.18 78.63 94.22 55.34 89.50 76.01
90.79 ResNet-34 & DeiT-S [29] TransFuse UCTransNet [25] ResNet-50 & CCT 78.23 26.75 88.86 66.97 80.18 73.17 93.16 56.22 87.84 79.43
92.06 Swin-B & DAB-CNN [18] ConTrans MT-UNet [26] MTM 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

93.91 ResNet-18 I2Net (K = 3) FCN 79.59 25.99 88.56 66.55 83.99 81.17 94.24 59.10 87.17 75.91

94.00 ResNet-18 (K = 6) I2Net I2Net (K = 4) FCN 78.99 28.70 89.44 69.89 83.98 79.90 92.98 55.78 86.71 73.27

Table 3. Ablation studies on Glas test and Synapse val (K = 3).

Orthogonal Exploitation Glas Synapse
I2Net Lgis Lges Llo DSC(%) HD95(mm) DSC(%) HD95(mm) Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

90.32 12.92 76.23 32.54 85.84 63.23 80.21 74.00 93.11 53.03 87.71 72.72
✔ 92.55 8.15 78.79 31.03 87.49 69.48 80.98 75.15 94.16 64.02 86.61 72.41
✔ ✔ 92.17 9.33 77.77 32.48 87.09 65.37 82.99 76.40 93.47 58.05 86.34 72.44
✔ ✔ 92.53 8.14 78.70 31.21 88.14 67.70 83.03 76.49 93.40 56.06 87.29 77.48
✔ ✔ ✔ 93.22 7.06 79.26 29.81 88.05 67.11 83.71 81.04 93.73 58.24 86.97 75.24
✔ ✔ 93.02 6.65 79.02 28.97 87.70 67.00 83.92 80.67 93.69 58.16 85.84 75.15

✔ ✔ ✔ ✔ 93.91 4.18 79.59 25.99 88.56 66.55 83.99 81.17 94.24 59.10 87.17 75.91

In addition, I2Net trained without Lgs and the one without Llo both obtain a
lower DSC of about 0.4∼0.9% than the full one.

Visualization of gates. To unveil what pattern each PL learns in I2Net, we
visualize some gates of I2Net (K = 3) trained on Synapse in Fig.1 in supple-
mentary material.

Generalization to generic semantic segmentation. To show the general-
ization ability of our I2Net, we further evaluate models on a popular benchmark,
i.e. Cityscapes, for generic semantic segmentation (Table 2, 3 in supplementary
material). We observe the consistent superiority of I2Net over the fancy aligning
methods (e.g. AlignSeg, SFNet), advanced CNN-based methods (e.g. DANet,
GCNet), and state-of-the-art methods using stronger backbones (e.g. OCRNet,
SETR).

4 Conclusion

In this paper, we propose I2Net, a novel implicit-parameterized INR network
to capture various patterns behind contexts for medical image segmentation.
We further propose novel gate shaping and learner orthogonalization to induce
I2Net to learn orthogonal context patterns. Extensive experiments show that
our I2Net, as a simple INR-based method, achieves superior performance over
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various competing methods, including fancy context aligning methods, advanced
CNN-based methods, and state-of-the-art methods using stronger backbones.
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