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Abstract. Federated learning has emerged as a compelling paradigm for
medical image segmentation, particularly in light of increasing privacy
concerns. However, most of the existing research relies on relatively strin-
gent assumptions regarding the uniformity and completeness of annota-
tions across clients. Contrary to this, this paper highlights a prevalent
challenge in medical practice: incomplete annotations. Such annotations
can introduce incorrectly labeled pixels, potentially undermining the per-
formance of neural networks in supervised learning. To tackle this issue,
we introduce a novel solution, named FedIA. Our insight is to conceptu-
alize incomplete annotations as noisy data (i.e., low-quality data), with
a focus on mitigating their adverse effects. We begin by evaluating the
completeness of annotations at the client level using a designed indicator.
Subsequently, we enhance the influence of clients with more comprehen-
sive annotations and implement corrections for incomplete ones, thereby
ensuring that models are trained on accurate data. Our method’s effec-
tiveness is validated through its superior performance on two extensively
used medical image segmentation datasets, outperforming existing solu-
tions. The code is available at https://github.com/HUSTxyy/FedIA.

Keywords: Federated learning · Incomplete annotation · Noisy label
learning · Segmentation.

1 Introduction

Recent progress in federated learning (FL) [13] has facilitated the collaborative
training of unified models across multiple decentralized entities in a privacy-
preserving manner [2,6,19,22]. In medical domains, FL has seen extensive appli-
cation in training segmentation models for distinct lesions and organs [18,8,20].
Nevertheless, an essential limitation in current research is the insufficient con-
sideration of the diversity in annotation completeness among clients.
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Fig. 1. Heterogeneity in annotation completeness among clients. Red and blue solid
lines represent the boundaries of marked lesions and unmarked lesions, respectively.

This issue primarily stems from the varying standards of annotation adopted
by various clients. As depicted in Fig. 1, certain clients (i.e., client k) provide
complete annotations for comprehensive diagnosis and analysis. Conversely, oth-
ers (i.e., client i and j ) may possess incomplete annotations where only partial
regions are marked, to minimize labeling costs, which are adequate only for basic
image-level assessments (e.g., rapid screening).

Given this heterogeneity in annotation completeness, training a segmentation
model via FL poses significant challenges. The inclusion of clients with incom-
plete annotations creates a situation where these clients are considered to be of
lower quality since partial positive regions are mislabeled as background. Such
imperfect annotations can negatively affect the overall performance of the model
due to the memory effect of neural networks [12,11]. To tackle this, in this paper,
we focus on the important yet under-explored problem: How to pursue better
FL under heterogeneity in annotation completeness?

Within the realm of FL, there has been some work focusing on data hetero-
geneity [4,5,7], but the heterogeneity in annotation completeness has been often
overlooked. As for strategies to diminish the negative impact of clients with
low-quality labels, these solutions predominantly focus on the classification task
[23,21], which is suboptimal when applied to the segmentation task. Although
FedA3I [20] has recently addressed the heterogeneity in annotation quality spe-
cific to segmentation, its underlying assumption, where mislabeled pixels mainly
distribute near objects’ boundaries, renders it ineffective against the challenge
of incomplete annotations. Consequently, developing an effective approach to
address this critical issue remains an area in need of further exploration and
insight.

In this study, we tackle the pressing problem of heterogeneity in annota-
tion completeness by introducing FedIA, a FL solution that is cognizant of and
adaptively corrects for client annotation completeness. Our foundational insight
is to perceive incomplete annotations as akin to noisy data. We commence by
developing an early model robust against the noise associated with incomplete
annotations, which then serves as a basis for evaluating each client’s level of an-
notation completeness. Subsequently, our aggregation process prioritizes clients
with higher annotation completeness, and clients undertake annotation correc-
tions before local model updating supervised by incomplete annotations. Our
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approach has been tested on two real-world medical datasets: a brain multiple
sclerosis MRI dataset and a COVID-19 lesion CT dataset. Results show that
FedIA outperforms other SOTA methods designed to address noisy/imperfect
annotations.

The contributions of this paper are three-fold: (1) A new FL problem concen-
trating on heterogeneity in annotation completeness; (2) A novel solution named
FedIA to tackle incomplete annotations; (3) Extensive evaluation to demonstrate
the superiority of the proposed solution.

2 Methodology

2.1 Preliminaries and Overview

This paper focus on a a single-class multi-lesion1 segmentation problem in a
federated scenario. Given K clients, each client possesses its private dataset Dk =
{(xi ∈ X ⊆ RH×W×C, ỹi ∈ Y = {0, 1}H×W

)
}nk
i=1, where nk is the size of Dk and

(xi, ỹi) represents the image-annotation pair characterized by dimensions: height
H, width W, and channel C. Contrary to an ideal situation, the annotations in
our case are considered imperfect due to incompleteness, with not every lesion
being marked. The completeness ratio ak = cnk,i/c

g
k,i, indicating the proportion

of marked lesions to the total actual lesions within Dk, which remains identical
among samples in Dk but differs across clients.

Our objective is to devise a robust algorithm capable of diminishing the
negative effects of incomplete annotations on the global model’s accuracy. The
cornerstone of our approach involves deriving an initial model that is minimally
affected by noise through the utilization of extensive noisy data, followed by
assessing each client’s annotation completeness ratio based on this initial model.
The strategy prioritizes learning from clients with higher completeness rates (i.e.,
higher-quality data), thereby enhancing the model’s performance. Furthermore,
a mechanism is incorporated to correct incomplete annotations at a certain stage
of the learning process, using a specially designed metric based on Intersection
over Union (IoU). The overview of FedIA is illustrated in Fig. 2.

2.2 Annotation Completeness Estimation

Assessing the level of annotation completeness across clients is imperative, as
it directly influences the tailored handling of each client’s data. To accomplish
this, obtaining a model that is unaffected by imperfect annotations becomes
essential. Our approach begins by interpreting incomplete annotations as noisy
labels, with unmarked lesions contributing noise by altering pixel-level labels
from 1 to 0. Drawing inspiration from the early learning phenomenon in noisy
label learning [11,10,12], which posits that neural networks initially adapt to
clean labels in the early stages before progressively accommodating noisy la-
bels, we can place confidence in the training process despite the prevalence of
1 This means an image can contain multiple lesions, each forming a connected region.
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Fig. 2. Overview of the proposed FedIA. The first stage is the early learning phase,
the global model is updated by FedAvg [13]. The second is the modification stage,
re-weighting each client by calculating its annotation completeness rate and correcting
incomplete annotations synchronously. In the last stage, local models are trained with
the corrected labels and aggregated for federated updating through FedAvg [13].

noisy labels and utilize the early model phase to gauge annotation completeness
across clients. Specifically, we develop an early-stage global model parameter-
ized by θT , capable of basic segmentation, by undergoing a warm-up period
for T communication rounds employing FedAvg [13]. This process involves the
server aggregating client models based on their respective data contributions to
formulate the global model, defined as:

θt =

K∑
k=1

nk

n
θt,k, (1)

where t denotes the current training round under the constraint 1 ≤ t ≤ T , and
n represents the amount of data from all clients, i.e., n =

∑K
k=1 nk. In this stage,

local optimization of each client is established on:

min
θk

∑
(xi,yi)∈Dk

ℓdc (f (xi; θt,k) , ỹi) , (2)

where f : X → [0, 1]H×W is the neural network and ℓdc : [0, 1]
H×W ×Y → R+ is

the Dice loss [14]. After obtaining the warm-up model parameterized by θT that
is relatively unaffected by noise, the annotation completeness rate âk of each
client k is estimated by the following formula:

âk =

∑nk

i=1 c
n
k,i∑nk

i=1 c
p
k,i

, (3)

where cnk,i and cpk,i denote the number of lesions in the noisy label ỹi and in the
predicted map ypi = f(xi; θT ), respectively.
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2.3 Annotation Completeness-Aware Aggregation

Quantity-based aggregation (i.e., FedAvg) is susceptible to noise caused by in-
complete annotations, especially when such annotations are numerous [20]. To
mitigate this, clients with higher annotation quality should dominate FL more.
Therefore, we calculate a completeness-aware aggregation weight wt

k at round t
for each client k, defined as

wt
k =

exp
(

âk

ℓtk

)
∑K

j=1 exp
(

âj

ℓtj

) , (4)

where ℓtk denotes the average loss of client k at round t calculated by

ℓtk =

∑
(xi,yi)∈Dk

ℓdc (f (xi; θt,k) , ỹi)

nk
. (5)

Generally, the observed loss is lower when annotation completeness is elevated.
Consequently, the server prioritizes clients exhibiting lower losses, effectively
reducing the negative effects of imprecise estimation of ak on the weighting
process, potentially arising from inappropriate selection of T .

2.4 Client-wise Adaptive Correction

The volume of data significantly influences the performance of neural networks,
and datasets characterized by low annotation completeness represent valuable re-
sources that should not be overlooked. Hence, rectifying incomplete annotations
to acquire cleaner data for further training of the model is essential. Given that
different clients pose datasets with varying levels of annotation completeness,
the onset of noise impact and their robustness to noise vary accordingly.

To capture this information, in the early learning phase (i.e., 1 ≤ t ≤ T ), we
compute IoU values every round for each client k and fit it with the first-order
polynomial function:

IoUk(t) = lk · t+ bk, (6)

where lk and bk are two parameters of the polynomial function. After early
learning and in sync with the completeness-aware aggregation, we monitor the
change of IoUk every round. Any client satisfying the following formula will
correct its annotations in the next round:

IoUk(t)− IoUk(t) > λ, (7)

where IoUk(t) denotes the actual IoU value of client k at round t. λ is an ad-
justable hyperparameter, set to 0.03 by default. In addition, the client only
corrects annotations for which its model output predicted probability has con-
fidence above a certain threshold setting of 0.8. It is worth noting that we only
correct the pixels with a value of 0 because only false negative lesions and no
false positive lesions are presented in this setting.



6 Y. Xiang et al.

3 Experiments

3.1 Datasets and Implementation Details

Datasets. Two public medical image segmentation datasets are included:

1. Two real-world multiple sclerosis datasets, focusing on the segmentation of
white matter lesions (WML) in 3D magnetic resonance (MR) brain images,
denoted as MS, including MSSEG-1 [1] and PubMRI [9]. In the task, we
only use the FLAIR modality, in which the lesions are relatively clear.

2. The widely-used COVID dataset, aiming at segmentation and quantification
of lung lesions caused by SARS-CoV-2 infection from computed tomography
(CT) images, denoted as LUNG.[16]

Each dataset is divided into training and test sets by a ratio of 8:2, whose training
set is then randomly split into four clients. For computational efficiency, all 3D
samples are converted into 2D slices and resized to 256×256 pixels.

To verify the robustness to different degrees of incompleteness of our method,
several settings are used for evaluation. Specifically, for MS, the annotation
completeness rate of the k-th client is set as 20%× k− 10%×m+40%. And we
conduct four sets of experiments, i.e., m = 0, 1, 2, 3. For LUNG, three different
settings are used, and the completeness rates are formulated as 10%×k−30%×
m+ 70%, where m = 0, 1, 2.

Incomplete Annotation Generation When doctors or other professionals
label multi-lesion data, they tend to label one lesion at the 3D volume level before
annotating another. Therefore, to simulate real noise and generate incomplete
annotation ṽj , lesions are randomly removed at the 3D level. This process allows
us to mimic real-world conditions more accurately. Specifically, we first set the
annotation completeness of each client as ak, which is unknown during training.
Then, we calculate the number of lesion-connected components cnj in each 3D
sample vj and randomly choose cnj lesion regions, where cnj = cgj · ak. Only
the chosen lesion regions are kept as well-annotated while others are set as
background (i.e., incomplete/missing annotation).

Implementation Details. In this work, U-Net [15] is adopted as the founda-
tional model architecture for FL. The FL training process is designed to include
a total of 300 communication rounds, with each local training phase consisting
of a single local epoch. During local training, the model undergoes optimization
via the Adam optimizer with momentum terms set to (0.9, 0.99), a batch size
of 4, and an initial learning rate of 1e-4. To accommodate the early learning
strategy, the initial learning round, T , is set as 10 for MS and 40 for LUNG.

3.2 Comparison with State-of-the-art Methods

In our analysis, we benchmark FedIA against recent leading methods tailored to
address label noise in both classification and segmentation tasks, including ELR
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Table 1. Comparison results with state-of-the-art methods under the MS and LUNG
settings. c0/c1/c2/c3 means the annotation completeness rates ak of clients are ck×10%,
corresponding to the setting of m. The average results (%) from the last ten rounds
are reported. The best results are marked in bold.

Methods From
MS LUNG

m = 0 m = 1 m = 2 m = 3 m = 0 m = 1 m = 2
4/6/8/10 3/5/7/9 2/4/6/8 1/3/5/7 7/8/9/10 4/5/6/7 1/2/3/4

FedAvg AISTATS’17 60.88 55.77 34.65 13.98 54.40 46.74 28.47
ELR NeurIPS’20 63.01 57.97 35.91 9.50 49.29 35.01 11.22
NR-Dice TMI’20 69.19 64.42 60.16 23.60 58.36 54.32 33.75
ADELE CVPR’22 61.34 58.63 25.01 0 54.33 44.14 17.89
FedCorr CVPR’22 62.03 57.12 30.35 0 55.24 50.56 23.78
RMD TMI’23 62.77 59.15 41.60 17.15 48.60 32.79 9.37
FedNoRo IJCAI’23 67.09 60.78 39.74 31.53 49.86 37.25 19.16
FedIA Ours 74.73 74.03 69.22 56.53 59.42 55.34 44.72

(a) GT (b) FedIA (c) FedNoRo (d) RMD (e) NR-Dice (f) others

Fig. 3. Qualitative comparison on MS where others represents FedAvg, ELR, ADELE,
and FedCorr failing to segment any lesion. Red, blue and green color show the prediction
of true-positive, false-negative and false-positive regions, respectively.

(NeurIPS’20) [12] and ADELE (CVPR’22) [11], which leverage the early learning
phenomenon to prevent model overfitting to noisy labels; RMD (TMI’23) [3],
which mitigates annotation noise in medical imaging through mutual distillation;
NR-Dice (TMI’20) [17], introducing a noise-robust Dice loss to combat noisy
labels; FedNoRo (IJCAI’23) [21], designed to manage class-imbalanced noisy
data; and FedCorr (CVPR’22) [23], employing the LID score to identity noisy
clients. Additionally, we incorporate the universally recognized FL framework,
FedAvg [13], as a baseline for comparison. Detailed implementations of these
methods are available in the supplementary material.

Quantitative comparison results on MS and LUNG measured by Dice co-
efficient (%) are summarized in Table 1. Notably, our FedIA exhibits consis-
tent performance even as annotation completeness diminishes, in contrast to
some methods whose effectiveness wanes with decreased annotation complete-
ness. This demonstrates that FedIA surpasses other sophisticated methods across
various datasets and configurations, underscoring the robustness and efficacy of
our strategy in tackling the challenge.

Exemplar qualitative comparison on MS in annotation completeness setting
of 10%, 30%, 50%, 70% is illustrated in Fig. 3. FedIA effectively recalls all lesions
with fewer false positives, leading to the best segmentation performance. Com-
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Table 2. Component-wise study.

FedAvg ACAG CAC MS
0 1 2 3

✓ 60.88 55.77 34.65 13.98
✓ ✓ 71.91 70.34 66.95 43.40
✓ ✓ 74.23 73.67 67.43 37.74
✓ ✓ ✓ 74.73 74.03 69.22 56.53

Table 3. Impact of the Round T

T
LUNG

0 1 2
10 56.53 52.25 46.88
20 59.36 54.78 45.37
30 59.52 55.07 44.74
40 59.42 55.34 44.72

paratively, FedNoRo, RMD, and NR-Dice suffer from extensive false negatives,
resulting in noisy segmentation. What’s worse, FedAvg and other comparison
methods completely fail to segment any lesion, indicating the difficulty in ad-
dressing heterogeneous annotation completeness and the necessity and value of
FedIA. More qualitative results are available in the supplementary material.

3.3 Ablation Study

Component-wise Study. We conduct an ablation study by separately remov-
ing the Annotation Completeness-Aware Aggregation (ACAG) and the Client-
wise Adaptive Correction (CAC) components from FedIA as summarized in Ta-
ble 2. We observe that FedAvg can benefit from both components, particularly
under the lowest annotation completeness settings. This phenomenon demon-
strates the effectiveness of our designs against annotation noise. The best per-
formance is typically achieved when both components are incorporated.

Impact of the Early Learning Round T . It is worth noting that the early
learning phase, denoted by T , is set differently for the two tasks as LUNG pre-
senting a more complex learning challenge compared to MS, essentially requir-
ing a longer early learning period. This variation prompts a relevant question
regarding the optimal number of training rounds necessary for effective early
training. To address this, we perform ablation studies on LUNG under various
T settings: 10, 20, 30, and 40 as summarized in Table 3. The results indicate
that our method exhibits considerable robustness to changes in T . Notably, Fe-
dIA consistently outperforms the baseline FedAvg across all tested T selections,
demonstrating its robustness and superior performance irrespective of the early
learning duration. More ablation studies are available in the supplementary ma-
terial for reference.

4 Conclusion

In this study, we tackle a significant yet overlooked challenge in federated medi-
cal image segmentation: how to enhance FL against heterogeneity in annotation
completeness. We approach incomplete annotations as akin to noisy data, em-
ploying strategies to mitigate their negative impacts denoted as FedIA. FedIA
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involves initially assessing the level of annotation completeness at the client level
through designed indicators. Then, it prioritizes clients with greater annotation
completeness and undertakes corrective measures for those with incomplete ones,
aiming to ensure that the training process is mainly based on accurate knowl-
edge. After rigorously evaluated through a line of experiments on two extensively
utilized medical image segmentation datasets, experimental results affirm the ef-
fectiveness of FedIA, showcasing its advantage over current leading approaches.
We believe that the issue formulated and the proposed solution will pave the
way for more practical FL applications in complex medical scenarios.
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