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Abstract. Medical image segmentation is of significant importance for
computer-aided diagnosis. In this task, methods based on Convolutional
Neural Networks (CNNs) have shown good performance in extracting lo-
cal features. However, they cannot capture global dependencies, which is
crucial for medical image. On the other hand, Transformer-based meth-
ods can establish global dependencies through self-attention, providing
a supplement to local convolution. However, the expensive matrix mul-
tiplication in the self-attention of a vanilla transformer and the memory
usage is still a bottleneck. In this work, we propose a segmentation model
named EMF-former. By combining DWConv, channel shuffle and PW-
Conv, we design a Depthwise Separable Shuffled Convolution Module
(DSPConv) to reduce the parameter count of convolutions. Addition-
ally, we employ an efficient Vector Aggregation Attention (VAA) that
substitutes key-value interactions with element-wise multiplication af-
ter broadcasting two vectors to reduce computational complexity. More-
over, we substitute the parallel multi-head attention module with the
Serial Multi-Head Attention Module (S-MHA) to reduce feature redun-
dancy and memory usage in multi-head attention. Combining the above
modules, EMF-former could perform the medical image segmentation
efficiently with fewer parameter counts, lower computational complexity
and lower memory usage while preserving segmentation accuracy. We
conduct experimental evaluations on ACDC and Hippocampus dataset,
achieving mIOU values of 80.5% and 78.8%, respectively.
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1 Introduction

As one of the fundamental yet crucial research directions in medical image anal-
ysis, medical image segmentation aims to classify the pixels of a given medical
image into regions, organs, or lesions using algorithms. The segmentation results
not only enable the detection of abnormalities in human body regions but also
serve as guidance for clinical practitioners.

Automated medical image segmentation can serve as an excellent assistant
diagnostic tool for medical experts. Existing medical image segmentation al-
gorithms can be categorized into two types: methods based on Convolutional
Neural Networks (CNNs) and based on Transformer networks.
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As one of the mainstream approaches in computer vision, Convolutional Neu-
ral Networks (CNNs) have been widely adopted in the field of medical image
segmentation. Most segmentation methods utilizing CNNs in medical image seg-
mentation are based on improvements of UNet [21] or its variants [29]. Following
the success of U-Net, numerous variants based on the U-Net architecture have
been developed, including Unet++[29], MHUNet [1].

With the rapid progress of vision tasks [27], researchers have started to focus
on lightweight segmentation models. Additionally, models like DC-Unet [18] and
EGE-UNet [22] have also proposed the lightweight methods in medical image,
specifically in polyp segmentation and skin lesion segmentation. However, due
to the focus of convolutional kernels on local regions, CNNs are unable to model
global dependencies, resulting in suboptimal performance sometimes.

In recent years, with the emergence of Transformer, there have been successful
attempts to apply them to computer vision tasks. Vision Transformer (ViT) [7]
pioneered the use of Transformer encoders for image classification. Furthermore,
ViT havs also been applied to the field of medical image segmentation, such as
TransUNet [5], UNETR [8] and Swin-Unet [4] which have achieved high-quality
organ segmentation results. Similarly, Segformer [25], nnformer [28] and CiT-
Net [11], efficiently achieve better performance in the field of medical image
segmentation. However, due to the reliance of self-attention in ViT, they lead to
significant computational costs and memory usage that can not be ignored.

Therefore, how to achieve lightweight Transformer to improve the segmenta-
tion efficiency is also an important research direction. The methods [20], [26], [27]
propose token sparsification, which reduces the computational cost and number
of parameters of matrix multiplication. CCNet [9] reduces the computational
complexity by designing an attention module. When these lightweight methods
are applied to medical image segmentation [15], [13], they also show good results
and accomplish segmentation tasks such as organ and blood vessel segmentation.

However, currently, there is limited research on designing structures specif-
ically for multi-head attention. They still employ parallel multi-head attention,
which fails to address the feature redundancy among different heads [12], [10]
and the memory usage caused by parallel attention calculation.

In this work, we have further improved a convolutional operation and intro-
duced a more efficient attention that reduced the expensive computational cost
and memory usage associated traditional Multi-Head attention.

In contrast to the existing approaches, our method provides the following
main contributions: (1) We propose a DSPConv module, which effectively re-
duces the number of parameters. The DSPConv module consists of DWConv,
channel shuffle and PWConv. And the convolution operation is performed on
few channels of the feature map. (2) We introduce an efficient attention named
Vector Aggregation Attention (VAA) that reduces the complexity of attention
computation. (3) The Serial Multi-Head Attention Module is proposed, to re-
duce memory usage by calculating attention serially. Meanwhile, in the process
of calculation, some heads will be ignored, aiming to reduce computational re-
dundancy among different heads. (4) Finally, by combining these modules, we
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Fig. 1. (a) and (b) respectively show the visualization of experimental results on ACDC
and Hippocampus datasets. The X-axis represents the number of parameters, while the
Y-axis represents mIoU. The color depth represents computational complexity.

created EMF-former. The experiments results demonstrated improvements in
overall metrics, validating the effectiveness of EMF-former.

2 Method

The visual comparison of some metrics is shown in Fig 1. The overall architecture
of EMF-former is shown in Fig 2(a).

2.1 DSPConv module

In this work, we propose a convolutional module named DSPConv by combin-
ing DWConv, channel shuffle, and PWConv. This convolutional module aims
to reduce the number of parameters in convolutional operations and feature re-
dundancy while ensuring accurate feature extraction. Inspired by the findings of
Chen et al. [6], we apply the method from the field of nature images to the field
of medical images and try to improve the approach, which selectively applies
DWConv only to a subset of channels in the feature maps. Compared to regular
Conv, DSPConv has fewer parameters, and can ensure information exchange
among different channels through channel shuffle and PWConv.

Specifically, the proposed DSPConv module is shown in Fig 2(b3). In the
process of getting the output O ∈ RH×W×C1 , firstly, our DSPConv module uses
DWConv with a kernel size of K on first 1/4 of channel C1. Additionally, to ensure
information interaction among different channels, we employ a channel shuffle,
shuffling the channels after the DWConv convolution operation and performing
PWConv on the remaining 3/4 of channel C1 to facilitate information exchange.
Therefore, the number of parameters required for our DSPConv is

K ×K × 1
4C1 +

3
4C1 ≈ K ×K × 1

4C1, (1)
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Fig. 2. (a1) The overall architecture of our EMF-former. (a2) Details of a EMF-former
Block. (b) Overview of DSPConv Modules. (c) Overview of Vector Aggregation Atten-
tion(VAA). (d) Overview of Serial Multi-Head Attention Module(S-MHA).

which is lower than the regular Conv with K ×K × (C1)
2. And the FLOPs are

H ×W ×K2 × 1
4C1 +H ×W × ( 34C1)

2 ≈ H ×W × ( 34C1)
2, (2)

which is fewer than regular Conv with H ×W ×K2 × (C1)
2. Moreover, as the

input channel size c increases, the difference in the total count becomes even
larger. By implementing this approach, we can reduce feature redundancy while
achieving lightweight results.

The DSPConv module used in the DSPConv Stem is shown in Fig 2(b2).
With this module, the feature map can be downsampled 4 times. The other is
the module used in the DSPConv Merge as shown in Fig 2(b1), where the feature
map can be downsampled 2 times.

2.2 Vector Aggregation Attention

For attention computation, Q, K, V∈ RN×d denote the query, key, and value
matrices, respectively(N = H × W, where H and W are the height and width
of the feature map). An attention function transforms each query as a weighted
sum of values, which is then multiplied by the V matrix to obtain the attention
score. This process requires matrix multiplication among Q, K, V, which all have
dimension RN×d, and results in the complexity of O

(
N2d

)
, as:

Attn(Q,K, V ) = softmax

(
QKT

√
C

)
V, (3)
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To reduce the computational complexity, in this work, we introduce an effi-
cient Vector Aggregation Attention(VAA) inspired by the approach proposed by
Shaker et al. [23] and Lin et al. [16], as shown in Fig 2(c). We replace the matrix
multiplication of Q and K with element-wise multiplication of two broadcasted
vectors. Additionally, we replace the key-value interaction with a fully connected
layer. This method not only enables the computation of global attention but also
reduces computational complexity compared to self-attention.

Specifically, after generating Q and K using a linear layer within a single
head, where Q and K are both ∈ RN×d, with N representing the number of
tokens and d can be interpreted as the length of each token. We utilize two
learnable vectors, Wq ∈ Rd×1 and Wk ∈ R1×N , to multiply with Q and K. This
generates two global attention vectors, Qα ∈ RN×1 and Kα ∈ R1×d, as:

Qα = QWq,

Kα = WkK,
(4)

where, Qα can be understood as aggregating the features of all dimensions of each
token, while Kα can be understood as aggregating all tokens into a single token.
Subsequently, we perform a broadcasting operation to obtain two matrices with
the same dimensions RN×d. These matrices are then multiplied element-wise
and through the Linear layer to compute the global attention, as:

V AAAttn(Q,K) = L

(
QαKα√

C

)
+K. (5)

Therefore, our proposed VAA avoids directly performing matrix multiplica-
tion on the Q matrix and K matrix and reduces the computational complexity
to O (N). And L is the Linear layer which replaces the V matrix.

2.3 Serial Multi-Head Attention Module

Meanwhile, the multi-head attention has feature redundancy among different
heads [12], [10]. It leads to the fact that the multi-head attention not only oc-
cupies any memory and computational resources, but many of its components
are used to extract redundant global features, which makes the overall efficiency
limited.

To address the problem, we designed the Serial Multi-Head attention module
(S-MHA), as shown in Fig 2(d), and each of the two different heads are com-
bined to form a Head Group. Then the computation results of different Head
Groups are connected to the next Head Group for summation, and the attention
computation is performed again. In addition, we try to introduce the work by
Chen et al. [6] into Transformer. Specifically, instead of performing the atten-
tion computation for the second head in each Head Group, we directly sum the
results of the computation with the first head.

The reason is that we hypothesize that since there is feature redundancy in
multi-head attention, we can refrain from performing attention calculations on
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some heads. Subsequent experiments prove that our conception is correct. We
set that the multi-head attention has a maximum of 8 heads (n=8), formally,
this attention can be formulated as:

Xi = V AAAttn(Q,K)Headi , i ∈ {1, 3, 5, 7} ;
Yi = Headi, i ∈ {2, 4, 6, 8} ;
HGi = X2i−1 + Y2i, i ∈ {1, 2, 3, 4} ,

(6)

where Xi denotes the attention output of the i-th head (i is odd). HGi denotes
the output of the i-th Head Group. It is worth noting that since no attention
calculation is performed on the Headi (i is even), the output can be considered
as the Headi itself, so Yi denotes the output of the i-th head (i is even).

To reduce redundancy among heads and encourage the Q, K layers to learn
projections on features with richer information. We add the output of the Head
Group to the subsequent head:

Head2i+1 = Head2i+1 +HGi, i ∈ {1, 2, 3} , (7)

Head2i+1 will be used as a new input feature for the (2i+1)-th head. Eventually,
we concatenate the output of the Head Groups to get the output:

SMHA = Concat [HG1, HG2, HG3, HG4] . (8)

Overall, with the above operations, the memory and computational resources
can be saved because the Serial Multi-Head Attention Module does not need to
be computed across multi-head at the same time. It is also possible to learn
richer features among different heads to improve model performance.

3 Experiment

3.1 Dataset and Implementation Details

Automated Cardiac Diagnostic Challenge (ACDC) [3] is a dataset for automated
cardiac diagnostics that contains a total of 100 patients. It related to three
organs, left ventricle (LV), right ventricle (RV) and myocardium (MYO). We split
the dataset to 70 training samples, 10 validation samples and 20 test samples.

The MSD Hippocampus dataset (Hippocampus) [2] is one of the segmenta-
tion tasks in the MSD (Medical Segmentation Decathlon), where the goal is to
segment the hippocampus of the brain from a 2D MRI image. We extracted 50
training samples, 20 test samples and 10 validation samples from the dataset.

We resized the images and labels to a size of 256 × 256, used a batch size of 4,
initialized the learning rate to 0.0015, employed the SGD optimizer, and trained
the network for 200 epochs with cross-entropy loss. Our EMF-former parameters
are set as follows: dims is {64, 128, 256, 512}, num_head is {1, 2, 4, 8}, depths
is {3, 4, 6, 3}. These values correspond to four stages of EMF-former. Our
framework was implemented in Pytorch and all experiments were performed on
NVIDIA GeForce RTX 2080Ti GPUs. We use the following common performance
evaluation metrics, including pixel accuracy (Acc), mean IoU (mIOU, the average
of the intersection and merger ratios).



EMF-former 7

Fig. 3. The visual comparison on ACDC and Hippocampus dataset.

3.2 Comparisons With Other Methods

In order to demonstrate the effectiveness of our proposed EMF-former, we con-
ducted comparative tests based on the ACDC dataset and the Hippocampus
dataset on ConNext [17], Unet [21], Unet++ [29], TransUnet [5], Segformer [25],
Pvt_v2 [24], ccnet [9], and EfficientFormer [14], respectively.

The quantitative results of the segmentation task on the ACDC dataset are
shown in Table 1, and the visual comparison are illustrated in Fig 3. Our method
achieves a balance between model complexity and accuracy. Specifically, our
EMF-former model achieves an mIOU of 80.5% and an ACC of 87.77%.

The results on the Hippocampus dataset are shown in Table 1, and the
visual comparison results are illustrated in Fig 3. Similarly, our method achieves
a balance between model accuracy and complexity, with an mIOU of 78.8%
and an ACC of 82.75%. Moreover, we observe that our method can guarantee
accurate segmentation of small targets, comparing to other methods.

3.3 Ablation Studies

To thoroughly demonstrate the effectiveness of different modules in our model,
we conducted a series of ablation experiments on the ACDC dataset.
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Table 1. Quantitative comparison with previous methods on ACDC dataset and Hip-
pocampus datasets. Blue indicates the best result, and red indicates the second-best.

Method ACDC Hippocampus Mem(M)Param(M) ACC(%) mIOU(%) ACC(%) mIOU(%)
ConvNext 31.26 70.97 61.6 50.00 49.9 344.7
Unet 31.03 76.37 74.6 71.45 68.4 547.7
Unet++ 45.48 85.92 75.4 78.05 73.6 2446.7
TransUnet 35.31 86.15 77.9 79.21 72.0 455.9
Pvt_v2 22.97 73.95 63.1 68.99 65.2 361.8
SegFormer 23.34 80.42 71.6 75.65 74.4 356.0
EfficientFormer 14.37 76.85 68.4 64.65 62.9 226.2
CCNet 47.42 80.65 71.3 73.77 68.5 787.2
EMF-former 17.34 87.77 80.5 82.75 78.8 324.8

Table 2. Ablation experiments of DSPConv, VAA and S-MHA in EMF-former in
ACDC dataset. The SHU refers to the convolutional modules proposed in ShuffleNet,
and the SWI refers to the additive attention proposed in SwiftFormer.

Backbone DSPConv VAA S-MHA Param(M) mIOU(%)
Segformer 23.34 71.6
Segformer ✓ 21.17 73.2
Segformer ✓ 19.94 74.2
Segformer ✓ ✓ 18.19 76.6
Segformer ✓ ✓ 18.75 75.7
Segformer SHU ✓ ✓ 17.04 77.2
Segformer ✓ SWI ✓ 17.01 78.3

EMF-former ✓ ✓ ✓ 17.34 80.5

As shown in Table 2, we can observe that the proposed DSPConv module,
Vector Aggregation Attention and Serial Multi-Head Attention Module demon-
strate excellent performance. Combining these three modules allows EMF-former
to achieve the best medical image segmentation results. Furthermore, when we
replace the DSPConv convolution operation with the convolution structure pro-
posed in ShuffleNet [19], which is also a lightweight model, the mIOU value
decreases. And we replace VAA with additive attention proposed in Swiftformer
[23], which has a similar attention calculation to our VAA, the mIOU value de-
creases. This further confirms the effectiveness of the modules in EMF-former.

4 Conclusion

In this work, we propose a segmentation model based on Transformer, named
EMF-former. We utilize the DSPConv module to significantly reduce the param-
eter count. Then we introduce an effective Vector Aggregation Attention that
replaces expensive matrix multiplication operations with element-wise interac-
tions between two broadcasted vectors. We also replace key-value interactions
with Linear layers. Additionally, we proposed the Serial Multi-Head Attention
Module, which enables the efficient utilization of computational and spatial re-
sources. Experimental results demonstrate that EMF-former ensures segmenta-
tion accuracy on several 2D medical image while achieving a lightweight effect.

In future work, we are interested in designing novel segmentation heads to
further reduce model size, enhance the model capacity and efficiency.
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