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Abstract. Within-subject multimodal groupwise registration aims to
align a group of multimodal images into a common structural space.
Existing groupwise registration methods often rely on intensity-based
similarity measures, but can be computationally expensive for large sets
of images. Some methods build statistical relationships between image
intensities and anatomical structures, which may be misleading when
the assumption of consistent intensity-class correspondences do not hold.
Additionally, these methods can be unstable in batch group registration
when the number of anatomical structures varies across different image
groups. To tackle these issues, we propose GMM-CoRegNet, a weakly su-
pervised deep learning framework for within-subject multimodal group-
wise registration. A prior Gaussian Mixture Model (GMM) consolidating
the image intensities and anatomical structures is constructed using the
label of reference image, then we derive a novel similarity measure for
groupwise registration based on GMM and iteratively optimize the GMM
throughout the training process. Notably, GMM-CoRegNet can register
an arbitrary number of images simultaneously to a reference image only
needing the label of reference image. We compared GMM-CoRegNet with
state-of-the-art groupwise registration methods on two carotid datasets
and the public BrainWeb dataset, demonstrated its superior registration
performance even for the registration scenario of inconsistent intensity-
class mappings.
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1 Introduction

For a group of multimodal medical images corresponding to a subject, variations
in image acquisition parameters or patient movement during the capture process
often result in distortions or deformations of the anatomical structures. Conse-
quently, the implementation of image registration methods becomes imperative
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to align multimodal images into a common structural space. Previous registra-
tion methods have predominantly focused on pairwise registration [19,5,4,13,3],
which align the moving images separately to a fixed image based on the similar-
ity measure. For instance, Mutual Information (MI) is an information-theoretic
measure widely employed in cross-modal image registration, particularly suc-
cessful in assessing the statistical dependence between two images [11,18].

Due to the curse of dimensionality, extending the registration method to N
images for N ≫ 2 can be challenging. Existing groupwise registration methods
usually estimate the desired spatial transformations by intensity-based similarity
measures [9,14,21,16,10]. The accumulated pairwise estimates (APE) framework
computes the sum of all pairwise mutual information (MI) from the warped
images as similarity measure [21], but has a heavy computational burden grows
quadratically with N . In [10], X -CoReg introduces X -Metric, which models the
statistical dependencies between the appearance of multimodal images and their
shared anatomical structures. Additionally, it expands a deep learning framework
to concurrently execute image registration and segmentation tasks. However,
certain structures may be visible only in a few specific modalities, and intensity-
class mappings between image pixels and anatomical structures are not always
one-to-one, where two pixels with the same intensity in one modality image may
correspond to different structures and different intensities in other modalities.
In such scenario, the effectiveness of MI or X -Metric can’t be guaranteed.

It is necessary to combine multimodal complementary information using a
directly multimodal similarity measure guiding the deformation of each moving
image. Orchard and Mann [14] achieve groupwise registration by modeling a
multivariate Gaussian Mixture Model (GMM) with a fixed number of Gaussian
components K for each group of images. Nevertheless, the number of anatomi-
cal structures in each subject may not be consistent, limiting its applicability in
batch groupwise registration. In addition, small anatomical structures are sus-
ceptible to significant initial misalignment, the GMM constructed based on a
single group of images may fail to achieve registration convergence.

In this paper, we focus on modeling the similarity measure based on a multi-
variate GMM and construct a deep learning groupwise registration framework.
Different from [14], we model the global multivariate Gaussian distributions cor-
responding to different anatomical structures by all training subjects, utilizing
the label of reference image in each subject as weakly supervised information.
Then the GMM constructed from specific structure numbers K

′
for each group

of images can serve as prior information, guiding the groupwise registration pro-
cess. The main contributions of this work can be summarized as follows:

1) We introduce GMM-CoRegNet, a weakly supervised deep learning frame-
work for within-subject multimodal groupwise registration. This framework can
register an arbitrary number of images simultaneously to a reference image and
achieve weak supervision by only requiring the label of the reference image.

2) The GMM corresponding to anatomical structures is modeled using the la-
bel of reference image as prior information. We derive a novel similarity measure
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Fig. 1: (a) Groupwise registration framework of our method when N = 4. (b)
Schematic diagram of the process of constructing the prior Gaussian Mixture
Model when K = 5. For ease of visualization, each N -dimensional Gaussian
distribution is shown in two dimensional space.

for groupwise registration based on GMM and iteratively optimize the GMM
throughout the training process.

3) We demonstrate the superiority of GMM-CoRegNet over previous SOTA
methods on two carotid datasets and the publicly available BrainWeb dataset.

2 Method

Assuming the training set has M subjects, let I = {Ii |i=1,...,N } be the group
of N multimodal images of the same subject. Groupwise registration aims to
align images I to a common space Ω. In this paper, treating each group of
images as a whole, we align N − 1 images to a reference image, with Ωref = Ω.
Assuming that within each subject, only the reference image is accompanied by
a label image denoted as Sref . Each location x ∈ Ω corresponds to a label value
k, k ∈ K , K is the set of labels. Our method models prior GMM leveraging
Sref as weak supervision and proposes a similarity measure, helping to derive
spatial transformation fields ϕ = {ϕi |i=1,...,N } that map all moving images to
the reference image.

Specifically, we designate T1 as the reference image in each I, thus defining
the common space as Ω1, with ϕ1 equals to zero. Detailed implementations are
given in the following sections.

2.1 Gaussian Mixture Model

For groupwise registration, given a set of N multimodal images observed, the
pixel at location x has N intensity values associated with it. We can represent
Ii = (vω,i)ω∈Ωi

, then the resampled intensity vector can be denoted as vϕ
x , i.e.
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vϕ
x =

[
vϕ1

x,1, ..., v
ϕN

x,N

]
, where vϕi

x,i = Ii ◦ ϕi(x) represents the pixel value of Ii at

location x ∈ Ω after applying the spatial transformation with parameters ϕi.
GMM Definition. The use of GMM to capture the probability density function
of image data is a well established approach [6,2]. Inspired by the work in [14] and
under the assumption of GMM [12], our method treats each anatomical structure
as a component k of the GMM follows multivariate Gaussian distribution. Then
the probability density function of vϕ

x can be expressed as:

p(vϕ
x ) =

∑
k∈KπkN (vϕ

x | µk, Σk) (1)

N (vϕ
x | µk, Σk) =

1

(2π)
N
2 |Σk|

1
2

e−
(v

ϕ
x −µk)T Σ

−1
k

(v
ϕ
x −µk)

2 (2)

where µk and Σk are the mean and covariance matrix of component k in the
feature space, and πk = p(k) is the prior probability of class k. Thus the dis-
tribution p(vϕ

x | k) denotes the conditional prior probability distribution of an
intensity vector vϕ

x categorized to the component k, which can be expressed as:

p(vϕ
x | k) = N (vϕ

x | µk, Σk) (3)

Parameters Calculation. Let Ωk ∈ Ω represent the coordinate space where
structure k is located, utilizing Sref of each subject, the intensity vector set

corresponding to structure k can be extracted as Uk
j = vϕ

xk , where xk ∈ Ωk,

and j ∈ M . As not every subject has K anatomical structures, let K
′
as the

set of labels corresponding to specific subject, thus each subject can obtain the
intensity vector sets based on k ∈ K

′
.

As shown in Fig. 1(b), to avoid bias from a fixed subject and consider the
population of train set as a whole to get GMM as prior information, we merge
the intensity vector sets extracted from the M training subjects into K overall

intensity vector sets. The Uk =
[
vϕ
xk,1

, ...,vϕ
xk,nk

]T
corresponding to each com-

ponent k is represented as an array of size [nk, N ], where nk denotes the number
of the pixels corresponding to structure k across the M training subjects. Then
the parameters of each Gaussian component k can be calculated by:

πk =
nk∑
k∈Knk

, µk =
1

nk

∑nk

i=1 v
ϕ
xk,i

, Σk =
∑nk

i=1(v
ϕ
xk,i

− µk)(v
ϕ
xk,i

− µk)
T (4)

Before performing the groupwise registration, deformation fields ϕ are equal
to zero, thus the initialization parameters for each multivariate Gaussian distri-
bution can be directly computed using the undeformed training dataset. As ϕ
iteratively update, we update the parameters in Equation (4) using the warped
training set images every 10 training epochs.

2.2 GMM-based similarity measure

Given the label image Sref in each subject as weakly supervised information,
the specific number of intensity vectors corresponding to structure k can be
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determined as nk,j , where k ∈ K
′
, j ∈ M and

∑
k∈K′ nk,j = nj . Then the label

proportion for each subject can be defined as πk,j =
nk,j

nj
.

Let (vϕ
xj
)xj∈Ω represents as the intensity vector of subject j, according to the

Bayesian formula, the posterior probability distribution can be written as:

p(k | vϕ
xj
) =

p(vϕ
xj

| k)p(k)
p(vϕ

xj )
=

N (vϕ
xj

| µk, Σk)πk,j∑
k∈K′ N (vϕ

xj
| µk, Σk)πk,j

(5)

Therefore, our similarity measure based on GMM can be derived using the
cross-entropy between the one-hot label Sref and the negative logarithm of the
posterior probability function:

Lsim = −
∑

k∈K′
∑

xj∈Ω sj log(p(k | vϕ
xj
)) = −

∑
k∈K′

∑
xjk∈Ωk log(p(k | vϕ

xjk
))

(6)
where sj is the sign function equal to 1 if xjk ∈ Ωk otherwise 0. Therefore,

we partition the common space Ω into K
′
anatomical structure regions and

accomplish groupwise registration by aligning all component regions through
the similarity function in Equation (6).

2.3 Neural network estimation

As shown in Fig. 1(a), we design a neural network framework parameterized
by θ to predict the deformation fields ϕ for a set of N multimodal images as
input. The neural network adopts the backbone architecture as described in
VoxelMorph [3]. Specifically, multimodal images are concatenated as a single
N -channel image input, and the output channel of the last convolutional layer
of VoxelMorph is modified to obtain N − 1 deformation fields. To guarantee the
smoothness of the deformation fields, we employ the bending energy R(ϕθ) as
a regularization term for deformation and incorporate it into the loss function.

2.4 Auxiliary loss function

As a group of images gradually optimizes alignment, intensity vectors corre-
sponding to the same structure will become more concentrated in the feature
space [20]. We measure the dispersion of the feature space by calculating the
variance of the intensity vector set corresponding to each anatomical structure:

Ldispersion =
∑

k∈K′
1

nk,j

∑
xjk∈Ωk(vϕ

xjk
− µk,j)

2 (7)

where µk,j = 1
nk,j

∑
xjk∈Ωk vϕ

xjk
represents for the mean of intensity vector set

corresponding to label k of subject j.
Furthermore, using Equation (5), the label value for location x ∈ Ω can

be predicted by the maximum probability. We further design a regularization
function computing the neighborhood similarity of the predicted label map Spred:

Llabel =
∑

x∈Ω
1
n

∑
i∈nf(sx, sxi

) (8)
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Fig. 2: Example images (with segmentation contours of T1 overlaid) before and
after registration by compared methods on the proprietary carotid dataset. Or-
ange arrows indicate regions where our method outperforms baseline methods.

where sx represents the predicted label value of Spred at location x, xi refers to
the neighborhood of x, f(sx, sxi) equals to 0 if sx = sxi otherwise 1. Specifi-
cally, for 3D images and 2D images, n denotes the six-neighborhood and four-
neighborhood, respectively. Hence, the final loss function of our method becomes:

Ltotal = Lsim + γ1Ldispersion + γ2Llabel + γ3R(ϕθ) (9)

γ1, γ2, γ3 indicate the coefficient of Ldispersion, Llabel and R(ϕθ), respectively.

3 Experiments and Results

3.1 Datasets and Preprocessing

Proprietary Carotid Dataset. This dataset includes misaligned 3D T1, T1c,
T2, and TOF carotid MR scans from our collaborative hospital. Experienced
physicians annotated the label image on the T1 scan, identifying vascular lumen
(VL), calcification (Cal), lipid (Lip), hemorrhage (Hem) and the rest area of the
vascular wall(VM). The dataset was randomly divided into training/validation/test
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Table 1: Quantitative evaluation results of compared methods on two carotid
artery datasets evaluated by DSC (%). The bolded numbers denote the highest
scores.

Methods
Carotid simulation dataset Proprietary carotid dataset

Reg DSC (%) Seg DSC (%)
Avg VL VM Cal Lip Hem Avg VL VM Cal Lip Hem

None 70.18 83.52 71.55 44.97 58.89 73.97 54.21 81.10 61.61 27.22 28.86 49.29

Ants-SyN [1] 77.67 87.52 78.58 56.42 64.02 81.49 59.77 83.19 63.76 33.78 32.09 53.48
APE [21] 78.11 88.77 76.34 58.33 66.34 82.64 60.27 83.83 64.28 34.44 30.32 54.39

VoxelMorph [3] 76.71 87.47 77.80 53.35 60.28 81.30 60.55 84.67 64.61 32.77 33.77 52.61
X -CoReg [10] 75.22 87.54 77.79 50.67 63.31 78.47 - - - - - -

Ours 79.41 88.06 80.20 60.29 67.52 85.45 62.88 85.69 68.07 36.71 36.09 55.70

sets with 160/25/45 subjects. All volumes were resampled to 1 × 1 × 1 mm3,
cropped to 128× 128× 32, and normalized to the range of [0, 1].
Carotid Simulation Dataset. Leveraging clinical literature [7,17] and our
proprietary carotid dataset, we utilized the pre-processed label image of each
subject to assign specific intensity values to anatomical structure regions across
the four modalities. This aimed to create simulated multimodal images that
closely resembled the actual intensity distributions of the structures. The division
ratio of this dataset was the same as that of the proprietary carotid dataset.
BrainWeb Dataset.4 This dataset offers simulated T1, T2, and PD MR scans.
Adhering to the procedures detailed in [10], we preprocessed the dataset by
selecting the middle slice from each image, cropping to a size of 192×160, and
normalizing to the range of [0, 1]. Anatomical structures encompass cerebrospinal
fluid (CSF), gray matter (GM), and white matter (WM). Further, FFDs were
applied to introduce misalignments. The preprocessed dataset was subsequently
partitioned into 252/36/72 for training/validation/test set.

3.2 Experimental Setups

Compared Methods. Two iterative methods Ants-SyN [1], APE [21] and two
deep learning models VoxelMorph [3], X -CoReg [10] were compared with our
GMM-CoRegNet. For Ants-SyN, we utilize MI as similarity measure and align
the moving images separately to the reference image. For VoxelMorph, we extend
its framework to groupwise registration (the same as introduced in section 2.3),
and calculate the sum of MI between each pair of moving image and reference
image as similarity measure. Regarding X -CoReg, its deep learning framework
with weakly supervised strategy was employed, utilizing only the label of T1.
Implementation Details.GMM-CoRegNet was implemented using PyTorch [15]
on an NVIDIA A800 GPU. Training utilized the Adam optimizer [8] with a learn-
ing rate of 1e-4 and a batch size of 1 for 500 epochs. γ1, γ2, and γ3 were set to
2, 1, 100 for two carotid datasets and 5, 1, 100 for the BrainWeb dataset. we
set K to 6 and 4 for the carotid simulation dataset and the BrainWeb dataset,

4 https://brainweb.bic.mni.mcgill.ca/

https://brainweb.bic.mni.mcgill.ca/
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respectively, for both X -CoReg and GMM-CoRegNet. In the proprietary carotid
dataset without background suppression, K was specifically set to 5.
Evaluation Metrics. We computed the Dice similarity coefficient (DSC) aver-
aged over all pairwise combinations of labels for registered images on the carotid
simulation dataset and BrainWeb dataset. Given that the proprietary carotid
dataset has labels only for the T1 modality, we assumed that a higher alignment
degree of multimodal images would lead to more accurate segmentation results.
After aligning the proprietary carotid dataset using various registration methods,
we maintained the same dataset partition ratios and employed TransBTS [22] as
the segmentation algorithm. Subsequently, the DSC of the segmentation results
on the test set was calculated as the evaluation metric.

3.3 Results

Comparison with SOTA. Table 1 presents registration accuracy on two
carotid datasets. For carotid simulation dataset, our method yielded optimal
groupwise registration results for 4 of the 5 anatomical structures, except the
DSC on the vascular lumen was slightly lower than APE. Remarkably, X -CoReg
exhibited suboptimal registration performance on carotid plaques, which can
be attributed to the non-uniform intensity-class mappings between the anatom-
ical structure and appearance. For instance, calcifications only exhibit distin-
guishable intensity distribution in the TOF modality. As for proprietary carotid
dataset, X -CoReg is not suitable for this experiment due to unablely construct-
ing the accurate statistical relationship between single background label and
complex background appearance without background suppression. Our method
achieved the highest segmentation improvement across all anatomical structures,
demonstrating excellent registration performance on clinical carotid artery im-
ages even without background suppression. In addition, experiments on the
BrainWeb dataset demonstrated that our method worked consistently better
than compared methods for multimodal brain images registration with superior
DSC of 76.02. 5 Fig. 2 shows the example of qualitative comparison on the propri-
etary carotid dataset, demonstrating our method could achieve better alignment
for both large-scale anatomy and local regions in most anatomical structures.
Ablation Study. We analyzed the effectiveness of each auxiliary loss func-
tion by excluding one of them from GMM-CoRegNet on the carotid simula-
tion dataset(average DSC of 78.23/78.45 for excluding Ldispersion/Llabel, respec-
tively)6. The results indicated that both auxiliary loss functions contribute to
the registration performance improvement. Even with the removal of one auxil-
iary loss function, the performance of our method remains competitive with the
best-performing baseline model (highest average DSC for APE: 0.7811).

5 See Table.1 in the supplementary material for results on all brain substructure.
6 See Table.2 in the supplementary material for detailed ablation study results.
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4 Conclusion

In this study, we introduced a deep learning framework based on GMM for mul-
timodal groupwise registration. This framework leverages the label of the refer-
ence image as weak supervision and incorporates the prior distribution of GMM
to design a multimodal similarity measure, guiding the groupwise registration
process. The experiments on two carotid datasets and Brainweb dataset demon-
strated that our framework not only achieved better registration performance
compared to the baseline methods in multimodal images registration with incon-
sistent intensity mappings, but also applied effectively to conventional groupwise
registration tasks, such as multimodal brain images registration.
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