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Abstract. Acquiring a comprehensive segmentation map of the reti-
nal image serves as the preliminary step in developing an interpretable
diagnostic tool for retinopathy. However, the inherent complexity of reti-
nal anatomical structures and lesions, along with data heterogeneity
and annotations scarcity, poses challenges to the development of ac-
curate and generalizable models. Denoising diffusion probabilistic mod-
els (DDPM) have recently shown promise in various medical image ap-
plications. In this paper, driven by the motivation to leverage strong
pre-trained DDPM, we introduce a novel framework, named DiffDGSS,
to exploit the latent representations from the diffusion models for Do-
main Generalizable Semantic Segmentation (DGSS). In particular, we
demonstrate that the deterministic inversion of diffusion models yields
robust representations that allow for strong out-of-domain generaliza-
tion. Subsequently, we develop an adaptive semantic feature interpreter
for projecting these representations into an accurate segmentation map.
Extensive experiments across various tasks (retinal lesion and vessel seg-
mentation) and settings (cross-domain and cross-modality) demonstrate
the superiority of our DiffDGSS over state-of-the-art methods.
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1 Introduction

Retinal fundus images give access to a highly detailed view of the interior surface
of the eye, typically centered around the macula or optic disc, and contain several
diagnostically relevant biomarkers. An abnormality in the retina can either be
a manifestation of eye disease, systemic disease, or trauma-induced injuries [22].
Therefore, accurately segmenting fundus images is a foundational step toward
creating an interpretable diagnostic tool. However, the intricate nature of retinal
anatomical structures and lesions, combined with the variability across datasets,
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as well as the scarcity of annotations, present significant obstacles in developing
models that are both accurate and capable of generalizing well.

With the intuition that the ability to generate data from a given domain im-
plies a profound understanding of the semantics of that domain, a line of works
has investigated the intermediate representations derived from Generative Ad-
versarial Networks (GANs) [7]. It was shown that these representations can be
decoded to produce a semantic segmentation map of the image, and training the
decoder requires only a handful of labeled examples to generalize to the rest of
the latent representations [30]. However, due to its lack of inference function-
ality, extracting the latent representations for real samples necessitates the use
of GANs inversion [27], which inverts the sample back into the latent space of
trained GANs. Current GANs inversion techniques either suffer from limited re-
construction quality or require significantly higher computational costs [27]. In
recent years, Denoising Diffusion Probabilistic Models (DDPM) [8] have been in-
troduced as a more effective form of generative modeling, which learns a network
that iteratively predicts and removes noise of multiple levels driven by a diffusion
process. In this context, Baranchuk et al. [1] investigated the intermediate rep-
resentations within pre-trained diffusion models that perform the Markov step
of the reverse diffusion (generative) process. These representations have been
found to be useful beyond noise prediction and possess greater semantic signif-
icance than those of GANs, allowing the segmentation branch to produce very
accurate labels for real images and not suffer from error-prone GANs inversion.
However, this generative process is inherently stochastic, where the latent space
only consists of a sequence of noise-induced degradation with limited semantic
content and can not be used to reconstruct observations [24].

Comprehending the latent space of diffusion models is crucial but challeng-
ing, and it is the key to advancing the use of diffusion models. By generalizing
the forward diffusion process from a Markov chain to a Non-Markov one, Song
et al. [24] showed that every stochastic DDPM has an ODE-based, determinis-
tic counterpart with the same output distribution. An important advantage of
the ODE-based, deterministic DDPM is that the generative process can be in-
verted. Specifically, by using the deterministic inversion technique derived from
Denoising Diffusion Implicit Models (DDIM), one can retrieve the latent code of
a given image, which can then be denoised to reconstruct the image [24]. More
importantly, unlike GANs the sophisticated inversion method is required, it can
retrieve the latent code of an arbitrary real image even if the image is not in the
trained domain [13]. Motivated by this insight, in this paper, we delve into the
intermediate representations derived from this process, with a particular focus
on Domain-Generalizable Semantic Segmentation (DGSS).

One major problem is that diffusion models learn visual concepts by solving
pretext tasks at thousands of noise levels, and it is not clear what information
the model learns at each level during training, and thus hard to determine the
priority of each timestep. Besides, the existing practice of upsampling feature
maps from various stages of the decoder to the highest resolution, followed by
a straightforward concatenation of these maps across multiple timesteps and
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Fig. 1. An overview of our DiffDGSS. Given an off-the-shelf diffusion model, the robust
latent representation of the image is obtained from the network by performing deter-
ministic DDIM inversion. Subsequently, we train a feature interpreter branch on top of
this multi-scale and timestep-dependent representation to predict a segmentation map.

blocks, leads to significant computer memory usage [1]. Also, they usually em-
ploy an ensemble of multi-layer perceptions (MLPs) to independently interpret
the feature vector of each pixel into a pixel-wise label [30, 1], which fails to
integrate local features with their global dependencies that are crucial for ac-
curately segmenting medical images. To tackle these challenges, we develop a
simple but effective interpreter to precisely refine and forward the feature maps
from each layer to the next layer within the DDPM backbone, ultimately yield-
ing the segmentation map. Overall, the main contributions of this paper can be
summarized as follows: (1) We present DiffDGSS, an innovative representation-
based approach aimed at achieving precise retinal image segmentation and ro-
bust out-of-domain generalization; (2) We design an adaptive semantic feature
interpreter to decode the multi-scale representations and dynamically adapt its
behavior over sampling timesteps; (3) Qualitative and quantitative experiments
across various tasks and settings demonstrate the superiority of our DiffDGSS
over state-of-the-art methods.

2 Methodology

We illustrate the overview of DiffDGSS in Fig. 1. First, we provide a brief
overview of the DDPM framework. Subsequently, we delineate the determin-
istic inversion technique and elaborate on the extraction of deterministic repre-
sentations from the DDPM backbone. Finally, we present our adaptive feature
interpreter, designed to effectively utilize these representations for DGSS.
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2.1 Denoising Diffusion Probabilistic Models

Consider a real data point x0 ∼ q(x0), DDPM delineates a forward diffusion
process that sequentially introduces Gaussian noise to the sample over T steps,
resulting in a sequence of increasingly noisy samples x1, . . . , xT :

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(1)

where {βt ∈ (0, 1)}Tt=1 denotes a fixed variance schedule and T is the maximum
timestep chosen so that xT resembles pure noise. Once the forward diffusion
process can be reversed, it becomes possible to create a new sample given a pure
noise. However, the reverse diffusion process q (xt−1 | xt) cannot be computed
directly, DDPM approximates it via:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) , Σθ (xt, t)) (2)

where µθ (xt, t) and Σθ (xt, t) refer to the mean predictor and covariance pre-
dictor, respectively. In practice, Ho et al. [8] proposed to train a noise predictor
ϵθ (xt, t) instead of directly learning µθ (xt, t) and fix the variance Σθ (xt, t) to a
constant since it produces better samples.

2.2 Deterministic Representation from Diffusion Models

By generalizing DDPM via a class of non-Markovian diffusion processes that lead
to the same training objective, Song et al. [24] proposed a more efficient class
of iterative implicit probabilistic models named DDIM that enjoys the following
deterministic posterior distribution:

q (xt−1 | xt, x0) = N
(
√
ᾱt−1x0 +

√
1− ᾱt−1

xt −
√
ᾱtx0√

1− ᾱt
, 0

)
(3)

where αt = 1− βt, ᾱt =
∏t

s=1 αs, the DDIM sampling (generative) process, an-
chored by the initial noise xT , forges an implicit latent space, which corresponds
to executing an ODE integration in the forward direction:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ (xt, t)√

ᾱt

)
+
√

1− ᾱt−1ϵθ (xt, t) (4)

Importantly, one can run this generative process in reverse (known as DDIM
Deterministic Inversion [24]) to retrieve the latent code capable of reconstructing
the real image with high fidelity. Although a slight error is introduced in each
step, it works well in the case without classifier-free guidance [20]. Our key insight
is that there is a deterministic mapping between the latent space and the image
space, and thus we parameterize µθ (xt, t) with an image generator Gθ (xt, t) [21],
which map a series of latent variables to a particular image:
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Gθ (xt, t) =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ (xt, t)

)
µθ (xt, t) =

√
ᾱt−1βt
1− ᾱt

Gθ (xt, t) +

√
αt (1− ᾱt−1)

1− ᾱt
xt

(5)

In other words, the network predicts a clean input x0 given xt, which generates
a diverse set of latent representations in the form of intermediate feature maps
[1] while executing the DDIM deterministic inversion:

xt+1 =
√
ᾱt+1Gθ (xt, t) +

√
1− ᾱt+1

xt −
√
ᾱtGθ (xt, t)√
1− ᾱt

(6)

Such timestep-dependent representation allows treating them as determinis-
tic representations of x0 for domain generalizable semantic segmentation.

2.3 Adaptive Semantic Feature Interpreter

We develop an adaptive semantic feature interpreter fφ (Ft, t) to interpret the
multi-scale representations Ft and dynamically adapt its behavior over sampling
timesteps t. It conditions the timestep-dependent representations using adaptive
group normalization layers (AdaGN), following Dhariwal et al. [5], which extend
group normalization [26] by applying channel-wise scaling and shifting on the
normalized feature maps h ∈ Rc×h×w:

AdaGN (h, t) = ts GroupNorm(h) + tb (7)

where (ts, tb) ∈ R2×c = MLP(ψ(t)) is the output of a multilayer perceptron
with a sinusoidal encoding function ψ. Then, the adaptive segblock comprises
two successive DWConv blocks [10] followed by the VSS-based Mamba block
[17] for short- and long-range dependency modeling. At inference time, we use a
majority voting mechanism to ensemble the prediction map of each timesteps-
dependent representation to obtain the final segmentation map [1].

3 Experiments and Results

Dataset Our approach began by pre-training DDPM using the large-scale un-
labeled EyePACS dataset (88, 702 images) [4]. Then, we evaluate our approach
on two distinct segmentation tasks of retinal fundus images: lesion segmenta-
tion (IDRID Lesion Segmentation Set [23]) and vessel segmentation (including
STARE [9], HRF [2], DRIVE [25] and CHASEDB1 [6] Dataset). To evaluate the
cross-modality vessel segmentation performance, we include two OCTA datasets
for evaluation, namely the OCTA-500 [15] and ROSE [19]. The partitioning of
the training and test sets adheres to prior studies [18].
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Fig. 2. Semantic interpolation between two real images. We employ the DDIM deter-
ministic inversion technique to obtain the latent codes of given images and interpolate
them linearly from one to another, and then we decode them to the image space.

Metrics We adopt the area-under-the-curve (AUC) of both the precision-recall
(PR) curve and receiving operating characteristic (ROC) curve to assess the
lesion segmentation performance, and employ the Dice Similarity Coefficient
(DSC) to assess the vessel segmentation performance, as they are also recognized
as metrics in prior competitions and research [31, 18].

Table 1. Comparison results of state-of-the-art methods on the IDRiD dataset.
*Method uses in-domain IDRiD Grading Set [23] while †Method uses ImageNet dataset
as the unlabeled data. Top 1 results are highlighted in bold.

Method Soft Exudates Hemorrhage Microaneurysms Hard Exudates

ROC PR ROC PR ROC PR ROC PR

VRT(1st Team)[23] - 69.95 - 68.04 - 49.51 - 71.27

19’AdvSeg* [12] 93.18 67.56 92.56 59.23 96.12 47.06 94.56 80.32
19’ASDNet* [12] 94.89 69.24 93.24 62.85 96.92 47.82 95.02 80.95
19’Zhou et al.* [31] 99.36 74.07 97.79 69.36 98.28 49.60 99.35 88.72
20’Self-training* [32] - 73.96 - 65.66 - 49.57 - 86.08
22’DDPM-Seg [1] 98.59 76.54 96.54 61.39 97.46 32.36 99.09 82.78
23’FEDD† [3] 97.94 59.64 95.89 52.11 96.34 41.41 99.30 85.04
23’Cut-Paste* [28] - 76.91 - 66.67 - 50.20 - 87.24
DiffDGSS (Ours) 99.43 79.71 98.04 65.44 99.20 43.15 99.52 88.26

w/o Deterministic Inversion 98.65 77.69 97.53 63.56 97.69 41.00 99.44 86.47
w/o Adaptive Interpreter 99.06 74.38 97.54 62.30 98.41 33.60 99.14 84.30

Implementation Details Preprocessing involves the removal of black bound-
ary regions from retinal images, followed by resizing to 512 × 512 pixels. Also,
we process Contrast Limited Adaptive Histogram Equalization (CLAHE) on all
images to enhance image contrast while preserving local details [11]. And we
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Fig. 3. Visualization of out-of-domain generalization in retinal image reconstruction:
A comprehensive analysis of DDIM deterministic inversion and sampling across an
extensive range of timesteps and data settings.

Fig. 4. Visualization of k-means clusters (k=5) formed by the representations at the
DDPM decoder blocks {8, 12, 16, 20} across diffusion steps {1, 10, 50, 100, 500, 1000}.

use only flipping for data augmentation [5]. Hyperparameters and model archi-
tecture for the pre-training DDPM follow the Guided-diffusion implementation
for ImageNet-512 [5] with total iterations of 120K and diffusion steps of 4000.
For the training of feature interpreter, through empirical experiments but not
tuned for each dataset, the representations are extracted from the DDPM de-
coder behind the 10th block with timesteps {1, 10, 100, 500}, and we use the
Adam optimizer with a learning rate of 0.0002 and a batch size of 4.

3.1 Experimental results and analysis

Deterministic Representation for DGSS In Fig. 2, the left and rightmost
images are real fundus images, and between them are reconstructed interpola-
tions in DDIM latent space. The result demonstrates the remarkable capability
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of deterministic inversion to capture and encode intricate high-level semantics
inherent in the samples. Furthermore, as shown in Fig. 3, the result underscores
that deterministic inversion gives latent that allows for reasonable reconstruc-
tions even with a few steps. Importantly, the findings also showcase the latent
space’s ability to generalize beyond the training domain, successfully preserv-
ing and reconstructing the semantic intricacies of retinal images from domains
or modalities previously unencountered. Interestingly, even with the ImageNet-
Pretrain DDPM, it also can produce reconstructions with a certain degree of fi-
delity, in stark contrast to outputs from stochastic DDPM sampling, which retain
only marginal semantic relevance. In addition, to provide deeper insights into
the latent representations, Fig. 4 presents a visualization of the k-means clusters
discerned by distinct blocks at different timesteps. The qualitative result across
different domains and modalities suggests the usage of these representations for
domain-generalizable dense prediction tasks.

Comparison and Ablation Study on the IDRiD Dataset Table 1 presents
the quantitative results of each lesion segmentation task. We observe that our
DiffDGSS achieves the highest ROC scores across all lesions in comparison with
state-of-the-art methods, indicating superior discriminative power. Despite this,
there remains room for improvement in PR scores, which is especially pertinent
given the challenge of class imbalance that hampers the performance of small le-
sions like microaneurysms. We also conduct ablation studies in Table 1 to better
understand the impact of the major contributions of our DiffDGSS. The ablation
result demonstrates the superiority of the representation derived from determin-
istic inversion over that of stochastic reverse diffusion and the effectiveness of
our feature interpreter design in contrast to simple MLPs [1].

Table 2. Quantitative comparisons with state-of-the-art DGSS methods over retinal
vessel segmentation. Top 1 results are highlighted in bold.

Method Cross-Domain Cross-Modality

HRF CHASE DRIVE STARE Average ROSE OCTA Average

20’BigAug [29] 70.06 76.50 76.42 79.61 75.65 - - -
21’FedDG [16] 71.85 76.40 76.61 80.92 76.44 8.51 6.13 7.32
22’AADG [18] 72.57 78.34 77.70 81.79 77.60 61.57 50.78 56.18

21’SemanticGAN [14] - - - - - 53.99 50.65 52.32
DiffDGSS (Ours) 74.12 78.47 77.72 80.46 77.69 66.88 61.99 64.43

Cross-Domain and Cross-Modality Generalization on Retinal Vessel
Segmentation We adopt the leave-one-domain-out strategy [18] to evaluate
the performance of DGSS methods across four distinct domains, with the com-
parative results detailed in Table 2. We observe that DiffDGSS outperforms the



DiffDGSS: DGSS with Diffusion Representation 9

alternatives, leading in HRF, CHASE, and DRIVE datasets with the highest
average DSC score of 77.69. To further corroborate the generalization ability of
DiffDGSS, we extend our evaluation to include a cross-modality experiment on
two OCTA datasets, achieving an impressive 64.43 average DSC score. Overall,
the results show that DiffDGSS is robust across various domains and modalities.

4 Conclusion

In this paper, by delving into the powerful yet under-explored potential of the
latent space in pre-trained DDPM, we introduce a novel framework DiffDGSS for
generalizable retinal image segmentation. Our findings demonstrated that diffu-
sion models are inherently effective for DGSS through the meticulous generative
modeling of unlabelled data, holding a promise to overcome the persistent data
heterogeneity and annotation scarcity in intricate medical image segmentation.
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