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Abstract. The serial section electron microscopy reconstruction method
is commonly used in large volume reconstruction of biological tissue, but
the inevitable section damage brings challenges to volume reconstruction.
The section damage may result in imperfect section alignment and affect
the subsequent neuron segmentation and data analysis. This paper pro-
poses an aligning and restoring method for imperfect sections, which con-
tributes to promoting the continuity reconstruction of biological tissues.
To align imperfect sections, we improve the optical flow network to ad-
dress the difficulties faced by traditional optical flow networks in handling
issues related to discontinuous deformations and large displacements in
the alignment of imperfect sections. Based on the deformations in differ-
ent regions, the Guided Position of each coordinate point on the section
is estimated to generate the Guided Field of the imperfect section. This
Guided field aids the optical flow network in better handling the com-
plex deformation and large displacement associated with the damaged
area during alignment. Subsequently, the damaged region is predicted
and seamlessly integrated into the aligned imperfect section images, ul-
timately obtaining aligned damage-free section images. Experimental
results demonstrate that the proposed method effectively resolves the
alignment and restoration issues of imperfect sections, achieving better
alignment accuracy than existing methods and significantly improving
neuron segmentation accuracy. Our code is available at https://github.
com/lvyanan525/Aligning-and-Restoring-Imperfect-ssEM-images.
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1 Introduction

The ssEM (serial section electron microscopy) reconstruction method is cru-
cial in volume reconstructions[13][14]. However, section damage is inevitable,
especially in the reconstructions of large samples[1][7]. The inevitable section
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damage may result in imperfect section alignment, subsequently affecting subse-
quent processes like neuron segmentation and data analysis. Therefore, aligning
the imperfect section is of great significance for ssEM reconstruction. Common
manifestations of section damage include cracks and folds, as shown in Fig. 1.
Cracks disrupt the structure of the biological tissue, but the tissue is still largely
preserved. In some cases, it is possible to restore the tissue to its pre-damaged
state. However, the situation is more challenging with folds as the loss of section
information is irreversible. Cracks or folds both cause structural fractures and
significant deformation of biological tissue on the section. As the deformations
are large and discontinuous, coupled with the loss of reference information, it
becomes challenging for subsequent serial section alignment.

Fig. 1. diagram of common manifestations of section damage. (a) Section without
damage. (b) Crack in the section. The deformation direction of the tissue near the
crack is roughly indicated by the red arrow, pointing away from the crack. (c) Fold in
the section. The tissues on both sides of the fold move towards the fold, as indicated
by the red arrow. (d) Diagram of categories clustered by k-means clustering algorithm.
Each color represents a distinct category.

The popular ssEM image alignment methods[3][5][18] mainly focus on the
serial sections without damage, with little attention on imperfect sections. In
recent years, large volume reconstruction has brought attention to the imper-
fect sections. Scheffer et al.[10] aligned imperfect sections through the triangular
mesh. Huang et al.[2] presented a comprehensive process that involves simulat-
ing the generation of folds and aligning imperfect sections through an improved
U-Net. These efforts mainly cover relatively simple section damage cases, mak-
ing them less applicable to complex damage. For large volume reconstruction,
Mitchell et al.[6] introduced the SEAMLeSS method to address alignment issues
arising from discontinuous deformations caused by imperfect sections. Popovych
et al.[7] proposed a divide-and-conquer approach, segmenting imperfect section
images into multiple fragments. Xin et al.[16] employed K-means and K-nearest
neighbors (KNN) to estimate the probability density of each cluster. While these
contributions offer promising methods for aligning imperfect sections in large-
volume reconstructions, they fall short in the restoration of folded regions, which
may pose challenges for subsequent neural tracing and segmentation tasks.

The concept of frame interpolation[11][15][17] can also be exploited to re-
place imperfect sections by generating it using information from its upper and
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lower sections. However, such methods often discard information preserved in the
originally imperfect sections, and the generated sections may lack authenticity.

In this paper, we propose a method for aligning and restoring imperfect
sections, effectively promoting the continuity reconstruction of biological tis-
sues. Addressing the challenge of aligning complex imperfect sections, Section-
Alignment module is proposed based on an optical flow network. Based on the
deformations in different regions, we estimate the Guided Position of each co-
ordinate point on the section. The Guided Positions guide the initial prediction
direction of optical flow network, making it better handle complex deformations
and large displacements. Furthermore, considering the discontinuity of damaged
regions may contradict the inherent smoothness expectation in optical flow, the
smooth constraint module of the optical flow network is refined. After align-
ment, we restore the damaged regions of imperfect section images, resulting in
an aligned and damage-free image. Experimental results demonstrate that the
proposed method effectively resolves the alignment and restoration issues of im-
perfect sections, achieving better alignment accuracy than existing methods and
significantly improving neuron segmentation accuracy.

2 Method

The paper proposes a method for aligning and restoring imperfect ssEM (serial
section electron microscopy) images to facilitate continuity reconstruction, as
shown in Fig. 2a. The Section-Alignment module effectively aligns imperfect
section images with the reference sections. The Section-Prediction module and
the Mosaic module contribute to restoring damaged regions in imperfect sections,
all contributing to yielding an aligned and damage-free image.

2.1 Section-Alignment module

In the Section-Alignment module, we improve the recently unsupervised optical
flow ARFlow[4], to address the challenge of aligning imperfect section images.
As shown in Fig. 2b. We introduce the Guided Position Estimation sub-module,
designed to estimate the Guided position for each coordinate point on the sec-
tion. This module proves crucial as it guides the prediction of the optical flow
network in the subsequent step. In the meantime, we further refine the smooth
constraint module of the optical flow network. This refinement aims to maintain
the adaptability and robustness of the optical flow network in aligning imperfect
sections, thus accommodating the unique challenges posed by non-continuous
damage regions.

Guided Position Estimation sub-module. The damaged regions destroy
the structural continuity in the sections, which leads to significantly different
deformations in different regions. The regions near the damaged region expe-
rience substantial displacement compared to other regions, exceeding the typi-
cal searching range of commonly used optical flow networks. Consequently, the
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alignment method based on optical flow networks may not work successfully.
We introduce the Guided Position Estimation sub-module to estimate approx-
imate transformations that different regions of imperfect sections are subject
to. It generates potential guided positions for each pixel in the Section image,
providing valuable reference information for the further optimization of the op-
tical flow network. This module aims to enhance the adaptability of the optical
flow network, enabling it to better handle the complex deformations and large
displacements associated with damaged regions during alignment.

Fig. 2. Diagram of the proposed method. (a)Pipeline of aligning and restoring imper-
fect ssEM images. The Section-Alignment module aligned the imperfect section I2 with
its neighboring image I1, resulting in the aligned section image I2_warp. The Section-
Prediction module predicted intermediate slice I2_p, by leveraging information from
the neighboring sections I1 and I3. The Mosaic module stitched the restored image
I2_p of damaged regions onto the aligned imageI2_warp, yielding the perfected and
aligned image Ir. (b) Section-Alignment module. The Guided Position Estimation sub-
module estimates the guided position for each coordinate point on the section I2. The
guided position map I2_field provides guidance of the prediction of the optical flow
network. U12 and U21 are the dense optical flow predicted by Flow network. O12is the
binary occlusion map, the photometric loss in the occluded region will be discarded.
Lph is photometric loss and Lsm is smooth loss.

The main idea behind the Guided Position Estimation sub-module is to di-
vide the imperfect sections into different categories based on the deformations in
different regions and apply different transformations. Regions within the same
category exhibit continuous structure and are subject to similar transformations.
As shown in Fig. 1d, each color represents a distinct category. Since the struc-
ture of the section except for damaged regions is continuous, it may be arbitrary
to categorize regions with continuous structure, especially concerning the points
near category boundaries, as marked by the red points (A and B) in Fig. 1d. This
arbitrary assignment has the potential to introduce discontinuities in the regions
along category borders. Instead of rigidly assigning points to specific categories,
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we recalculate the probabilities of each point belonging to every category. This
recalculation allows us to establish a model that considers the influence of multi-
ple categories on each point. So, we can obtain a more accurate representation of
the transformation of each coordinate point, especially the points nearing cate-
gory boundaries, minimizing the risk of introducing discontinuities in the aligned
image.

Assuming that the coordinate points on I2 are clustered into k categories,
denoted as c1, c2, . . . , ck. The transformations corresponding to each category
are T1, T2, . . . , Tk. The probability that each point p belongs to ci is

ρ (p, ci) =
li∑k

j=1 lk
(1)

li =
1

di + ϵ
(2)

Where di is the path distance between coordinate point p and the center of ci,
ϵ is a constant close to 0 (e.g. 1e-10).

The transformation of each coordinate point is

T (p) =

k∑
i=1

ρ (p, ci)Ti∑k
j=1 ρ (p, cj)

(3)

Based on the transformation T (p) of all coordinate points on the section, a
guided deformation field of the imperfect section can be generated.

Smooth constraint Since the motion directions on either side of the dam-
aged region may not only be dissimilar but also exhibit opposing trends, the
traditional smooth constraint may go astray, resulting in poor alignment results.

We changed smooth loss as

Lloss =
∑
d∈x,y

∑
p

∥Im∇dU∥e−|Im∇dI| (4)

Where U is the optical flow field matched to the reference image. Im is the mask
of the damaged region of moving image I after each iteration of deformation.

This smooth constraint is intended to enhance the accuracy and robustness
of the alignment process in the presence of discontinuous damage.

2.2 Section-Prediction module

The Section-Prediction module was used to predict the damaged region of im-
perfect section based on the relationship between the neighboring upper and
lower sections. It is mainly based on our previous work STDIN [12], a spatio-
temporal distilled interpolation method for electron microscope images. Through
the Section-Prediction module, we obtained the restored image I2_p of imperfect
section. The effectiveness of this method has been validated on publicly available
data CREMI(https://cremi.org/).

https://cremi.org/
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2.3 Mosaic module

Due to potential misalignment, directly cropping the restored image generated
by the Section-Prediction module and replacing it on the damaged region in the
imperfect section may be impractical. Therefore, the Mosaic module is intro-
duced as shown in Fig. 2a. We first crop the restored image I2_p based on the
mask warp with padding, denoted as Iwm. Then, the elastic alignment method[9]
effectively mosaic Iwm and I2_warp. The mosaic module helps seamlessly mosaic
the restored section onto the damaged region in aligned images.

3 Experiments and Results

We have compared the proposed method with several alignment methods, in-
cluding SiftFlow[3], ARFlow[4], SEAMLeSS[6], and EA[16]. We have evaluated
the accuracy performance on aligning imperfect sections and the benefits for con-
tinuity reconstruction among the proposed method and the compared methods.
The experiments are performed on two datasets: FAFB data[19] and zebrafish
brain ssEM data[16], consisting of 100 pairs of images each. The resolution of
images is 32nm × 32nm, the image size is 1024 × 1024 pixels. All image pairs
are coarsely aligned by affine transformation in advance. All models are trained
with Intel(R) Xeon(R) Gold 6142 CPU and one NVIDIA Tesla V100 GPU.

Fig. 3. The accuracy visualization result for the compared method and our method.
The region in green rectangle represents regions away from folds, where ssEMnet,
SEAMLeSS, and ARFlow have achieved relatively good results. The regions in red and
purple rectangles depict regions close to folds, where only EA and our method have
demonstrated notable effectiveness.

3.1 The accuracy performance of imperfect section Alignment

We illustrate the accuracy visualization result in Fig. 3. It also shows the align-
ment accuracy in different locations visually by heatmap. We overlay the align-
ment results of the imperfect section and the reference section image together as
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the visualization result. The more artifacts in image, the less accurate the align-
ment is. It can be observed that our method has achieved alignment accuracy
superior to the compared methods. Within areas where coarse alignment has
yielded relatively commendable accuracy, both SEAMLeSS and ARFlow have
demonstrated favorable alignment effects. Nevertheless, they exhibit limited ef-
fectiveness in regions that lack proper alignment during the coarse alignment.
The EA method outperformed other compared methods in regions close to folds,
but its alignment performance is suboptimal in certain regions.

Furthermore, we use Normalized Cross-Correlation (NCC) and Structural
Similarity Index (SSIM) to evaluate the accuracy performance. As shown in
Table 1, our method achieves the highest accuracy.

Table 1. Alignment accuracy comparison by Normalized Cross-Correlation (NCC) and
Structural Similarity Index (SSIM)

Method Fold(NCC) Fold(SSIM) Crack(NCC) Crack(SSIM)
Moving 0.6474 0.1869 0.7385 0.3699
SiftFlow[3] 0.5901 0.0860 0.6768 0.2012
SEAMLeSS[6] 0.7512 0.4052 0.7990 0.4952
ARFlow[4] 0.7247 0.3393 0.8601 0.5974
EA[16] 0.7711 0.4167 0.8883 0.6163
Ours 0.7830 0.4414 0.8961 0.6424

Table 2. The average width (pixels) of misalignment region.

Moving(Affine) SiftFlow[3] SEAMLeSS[6] ARFlow[4] EA[16] Ours
Fold 150 100 140 130 90 80
Crack 180 150 180 120 30 30

In addition, we also compare the average width of misalignment region[7]
around damaged regions. As shown in Table 2. Compared to coarse (affine) align-
ment, SiftFlow worsens the results. SEAMLeSS, ARFlow and EA contribute to
an enhancement in alignment accuracy to varying degrees. Notably, our method
achieves the highest alignment accuracy.

3.2 The benefits for continuity reconstruction

The damaged regions may disrupt the continuous of structure, which may make
challenges for subsequent neuron segmentation tasks. We conducted experiments
on two damaged regions with different-sized structures on the publicly available
FAFB dataset, which is already well aligned. We use Section-Prediction module
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and the Mosaic module to restore the damaged region, as shown in Fig. 4. U-
net[8] is used to perform segmentation. The proposed method shows that the
restored sections perform better segmentation than the unrestored sections.

Fig. 4. The segmentation performed on restored sections and unrestored sections. (b)
and (d) are the restored sections of sections (a) and (c). The red arrows mark the
location where the continuity of segmentation is disrupted near the folded area. The
restored sections shows better segmentation performance than the unrestored sections.

Imperfect sections may result in misalignment, inevitably affecting neuron
tracing and consequently impacting the continuity reconstruction. We select 64
serial sections for experiment, in which the 32nd section is an imperfect section.
We manually tracked two blood vessels (labeled as red and blue) distributed on
both sides of the damaged region, as shown in Fig. 5. It is evident that there
is a discontinuity observed near the damaged region due to the affine alignment
method, and our method ensures the continuity of structure.

Fig. 5. The manually tracked two blood vessels distributed on both sides of the dam-
aged region. (a) The alignment result and accuracy for affine method. The right side of
the damaged region is well aligned, while the left side has lower alignment accuracy. (b)
The alignment result and accuracy for our method. Both sides of the damaged region
are well aligned. (c) The visualization of alignment results in x-z direction for moving
(affine). The blood vessel manually tracked on the right side of the damaged region
continues, while the blood vessel on the right side is discontinued. (d) The visualiza-
tion of alignment results in x-z direction for our method. The blood vessels manually
tracked on both sides of the damaged region are continuous.
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4 Conclusion

The proposed method offers a practical solution for aligning and restoring im-
perfect sections, which contributes to the enhancement of alignment accuracy,
promoting the continuity reconstruction of biological tissues, and the improve-
ment of automatic segmentation precision. Experimental results demonstrate
that the proposed method overtakes comparative methods in alignment accu-
racy, achieving the smallest misalignment area and the lowest percentage of
imperfect sections. Additionally, the effective restoration of damaged regions in
imperfect sections improves the accuracy of neuron tracing and segmentation,
effectively promoting the continuity of neuron reconstruction.
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