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Abstract. Alzheimer’s disease (AD) is an irreversible neurodegenera-
tive disease, where early diagnosis is crucial for improving prognosis and
delaying the progression of the disease. Leveraging multimodal PET im-
ages, which can reflect various biomarkers like Aβ and tau protein, is a
promising method for AD diagnosis. However, due to the high cost and
practical issues of PET imaging, it often faces challenges with incomplete
multimodal data. To address this dilemma, in this paper, we propose
a Graph-embedded latent Space Learning and Clustering framework,
named Graph-SLC, for multiclass AD diagnosis under incomplete mul-
timodal data scenarios. The key concept is leveraging all available sub-
jects, including those with incomplete modality data, to train a network
for projecting subjects into their latent representations. These latent
representations not only exploit the complementarity of different modal-
ities but also showcase separability among different classes. Specifically,
our Graph-SLC consists of three modules, i.e., a multimodal reconstruc-
tion module, a subject-similarity graph embedding module, and an AD-
oriented latent clustering module. Among them, the multimodal recon-
struction module generates subject-specific latent representations that
can comprehensively incorporate information from different modalities
with guidance from all available modalities. The subject-similarity graph
embedding module then enhances the discriminability of different latent
representations by ensuring the neighborhood relationships between sub-
jects are preserved in subject-specific latent representations. The AD-
oriented latent clustering module facilitates the separability of multiple
classes by constraining subject-specific latent representations within the
same class to be in the same cluster. Experiments on the ADNI show
that our method achieves state-of-the-art performance in multiclass AD
diagnosis. Our code is available at https://github.com/Ouzaixin/Graph-
SLC.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that causes symptoms,
such as memory loss, language difficulties, and disorientation, posing a significant
threat to patients’ health [3, 18]. Despite substantial resources have been devoted,
there are currently no effective treatments to cure AD. In this context, early
diagnosis of AD is crucial for timely interventions that may prevent or at least
delay the progress of AD, as well as its prodrome, i.e., mild cognitive impairment
(MCI) [15, 16]. Among various diagnostic approaches, multimodal PET diagnosis
stands out as the most promising method due to its capability to reflect changes
in multiple AD-related biomarkers. However, due to the high radiation risk and
cost associated with PET imaging, this approach often faces challenges with
incomplete multimodal data [1, 21].

There have been some studies attempting to address the issue of missing
data in multimodal PET diagnosis. These studies can be categorized into two
categories: missing data imputation [14, 17, 25] and latent space learning [27,
28, 13, 7]. The missing data imputation-based methods aim to complete missing
data through generative models. For example, Pan et al. [14] proposed a feature-
consistency generative adversarial network to impute missing PET images from
MRI, and then utilize the completed data for AD diagnosis. However, such meth-
ods typically require a large number of subjects with paired data to train the
generation network, while paired data are often limited and difficult to obtain.
Moreover, the process of generating missing data may introduce redundant or
biased information, potentially affecting the final diagnosis [4].

To overcome these limitations, some studies [23, 12, 11, 9] have focused on
developing latent space learning-based methods to flexibly handle incomplete
multimodal data without requiring imputation of missing data. Compared to
imputation-based methods, latent space learning-based methods project input
data into the lower-dimensional latent to extract essential information. Besides,
latent space learning-based methods can flexibly handle incomplete multimodal
data scenarios in practical applications without the necessity of paired data. For
example, Zhou et al. [27] utilize all available subjects (including subjects with
incomplete modality data) to learn a latent space, and then project the latent
space to the label space for AD diagnosis. However, such methods treat the la-
tent space as two separate components: a modality-common latent space and a
modality-specific latent space, failing to fully leverage the complementary infor-
mation between different modalities, which results in suboptimal performance
[10]. Besides, they overlook relationships between the latent representations of
different subjects, making it challenging to derive discriminative latent represen-
tations [22].

Instead of dividing the latent space into separate parts, our method pro-
poses to learn a whole comprehensive latent representation for each subject.
This subject-specific latent representation not only explores the complementary
information of different modalities but also demonstrates separability among dif-
ferent classes. To achieve this, in this paper, we propose a graph-embedded latent
space learning and clustering framework for incomplete multimodal multiclass
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Fig. 1. Illustration of our proposed Graph-SLC. It consists of three modules: a) A mul-
timodal reconstruction module to generate the subject-specific latent representations
that can comprehensively incorporate information from different modalities with guid-
ance from all available modalities; b) A subject-similarity graph embedding module
to constrain the latent representations to preserve neighborhood relationships within
subjects; c) An AD-oriented latent clustering module to improve the separability of
the latent representations across different disease classes.

AD diagnosis. First, we utilize a multimodal reconstruction module to gener-
ate subject-specific latent representations that can comprehensively incorporate
information from different available modalities. Second, to enhance the discrim-
inability of different latent representations, we introduce a subject-similarity
graph embedding module to ensure that the neighborhood relationships between
subjects are maintained in latent representations. Third, to facilitate the separa-
bility of multiple classes, we introduce an AD-oriented latent clustering module
to constrain latent representations of the same class to be clustered together.

The main contributions of our work include: i) Proposing a graph-embedded
latent space learning and clustering framework for incomplete multimodal multi-
class AD diagnosis, with the capability of handling incomplete multimodal data
scenarios; ii) Employing a subject-similarity graph embedding module to ensure
integrity of neighborhood relationships within the latent space, thereby deriving
discriminative latent representations effectively; iii) Introducing an AD-oriented
latent clustering module to enhance separability of multiple classes within the
latent space for capturing the characteristics of class distributions among sub-
jects.

2 Method

Our proposed Graph-SLC is illustrated in Fig. 1, comprising three key com-
ponents, including 1) multimodal reconstruction module, 2) subject-similarity
graph embedding module, and 3) AD-oriented latent clustering module. For a
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given subject, the multimodal reconstruction module first generates a subject-
specific latent representation, which integrates information from different modal-
ities under the guidance of all available modalities. Subsequently, the latent rep-
resentation is constrained by the subject-similarity graph embedding module to
maintain neighborhood relationships between the input subject and other sub-
jects within the latent space. Finally, the latent representation is fed into the
AD-oriented latent clustering module to enhance its separability across different
disease categories. We introduce details of each component in our Graph-SLC
below.

2.1 Multimodal Reconstruction

Recent studies have demonstrated that multimodal data can improve perfor-
mance of multiclass AD diagnosis by providing complementary information [14,
29, 19]. Thus, to capture complementary information between different modali-
ties, we project subjects with arbitrary modality-missing patterns into the cor-
responding latent representations, each of which incorporates information from
different modalities. For example, given a subject si in the dataset S with M par-
tial modalities {x1i , . . . , xMi }, we can model the likelihood of the subject-specific
latent representation zi as:

p(si|zi) ∝ e−Lr(si,fr(zi)) (1)

where p(si|zi) = p(x1i |zi)p(x2i |zi) . . . p(xMi |zi), which assumes that each modality
can be reconstructed from a complete representation in a numerically stable way
[24]. Lr(si, f(zi)) is the multimodal reconstruction loss, which can be formulated
as:

Lr =
N∑
i=1

M∑
j=1

||xji − f(zi)||22 (2)

where f(·) represents the reconstruction mapping from the latent representation
zi toM partial modalities of subject si. We construct f(·) using four layers of up-
sampling and residual blocks. Specifically, the first two layers are shared among
all modalities, while the latter two layers are modality-specific, as illustrated in
Fig. 1(a).

2.2 Subject-similarity Graph Embedding

In the field of latent space learning, a recognized manifold assumption is that
if two data points are close to each other, their corresponding low-dimensional
representations should be also close in the latent space [20]. Drawing inspiration
from this principle, we extend this concept to the relationships between subjects.
For example, considering two subjects si = [x1i , x

2
i ] and sj = [x1j , ∅], if these two

subjects are very similar, their latent representations either by complete modal-
ities (i.e., zi) or by incomplete modalities (i.e., zj) should also maintain such
neighborhood relationships. Consequently, by pulling the corresponding latent
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representations of these two subjects closer in the latent space, the latent rep-
resentation of sj can implicitly capture information about missing modality x2j ,
thereby enhancing diagnostic capacity of this latent representation. To preserve
the integrity of such neighborhood relationships within the latent space, we in-
troduce a graph embedding loss:

Lg =
1

2N

n∑
i=1

n∑
j=1

∥zi − zj∥22Gij (3)

where Gij denotes the nearest neighbor graph constructed from subjects S as
follows:

Gij =

{
1, if (ψ(si) ∈ sj or ψ(sj) ∈ si)

0, otherwise
(4)

where ψ(si) denotes the nearest subject to si. To determine ψ(si), we identify
the subject with the lowest average difference between the modalities shared by
si and those of the remaining subjects.

2.3 AD-oriented Latent Clustering

AD is a progressive disease, with no significant difference between various stages
(especially between MCI and AD), posing significant challenge for multiclass AD
diagnosis. To address this challenge, we design a targeted AD-oriented latent
clustering algorithm to enhance the separability across different classes in the
latent space. Specifically, we first utilize a spectral clustering algorithm [8] on the
latent representations to perform latent space clustering. Subsequently, based
on the clustering result, we compute probability density distributions of the
latent representations. Finally, we introduce a distribution consistency loss [26]
to minimize discrepancy between the probability density distributions of latent
representations and the probability density distributions of subjects, as depicted
in Fig. 1(c). The distribution consistency loss can be expressed as follows:

Ld =
N∑
i=1

f̂(si)log
f̂(si)

f̂(zi)
(5)

where f̂(si) and f̂(zi) are the probability density distribution of subjects S =
[si, . . . , sN ] and their corresponding latent representations Z = [zi, . . . , zN ], re-
spectively. We use kernel density estimation [2], a nonparametric technique, to
estimate the probability density distribution.

Based on the above considerations, the overall objective function is induced
as:

L = Lr + λ1Lg + λ2Ld (6)

where Lr represents the multimodal reconstruction loss, Lg denotes the graph
embedding loss, and Ld is the distribution consistency loss. Additionally, λ1 and
λ2 are the two weighting factors for the Lg and Ld loss terms, respectively.
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Table 1. Demographics for the dataset, with some data shown as mean±std.

AD (410) MCI (1080) CN (868)
Gender (Female/Male) 180/230 450/630 486/382
APOE (ε4/non ε4) 262/148 503/577 243/625
Age 74.94±7.77 72.83±7.64 72.50±6.60
MMSE 23.17±2.22 27.61±1.86 29.08±1.11
Years of education 15.23±2.91 15.98±2.76 16.52±2.53

3 Experiments

3.1 Materials and Experimental Setup

To validate our proposed Graph-SLC, we collected 2358 subjects from the pub-
lic Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset4. Of these 2358
subjects, 1416 subjects are used for training, 471 for validation, and other 471
for testing. All subject have MRI scans, but only some of them have additional
multimodal PET scans available, including FDG-PET, Aβ-PET, and Tau-PET.
Further details about the collected dataset are provided in Table 1. All T1-
weighted MRI scans underwent preprocessing via a standard pipeline, which
included intensity correction, skull-stripping, and linear alignment to the Mon-
tréal Neurological Institute (MNI) template. Each PET scan was aligned with
its corresponding MRI scan and registered to the template using the same affine
matrix as its corresponding MRI scan. To eliminate anisotropy, all images were
resampled to dimensions of 192× 192× 192 with a voxel spacing of 1 mm3.

In our implementation, the learning rate is set to 1e−4, and the weight decay
is set to 5e−5. We assign weights λ1 and λ2 in the loss function as 1 and 0.1,
respectively. All models in this study are trained for 40 epochs and are subject to
early stopping if the loss does not decrease for 20 consecutive epochs. We train
the models using PyTorch on a single NVIDIA Tesla A100 GPU. Evaluation
is performed using five-fold cross-validation. Across all experiments, we assess
performance based on diagnosis accuracy (ACC), precision (PRE), specificity
(SPE), and F1-Score (F1S).

3.2 Performance of Proposed Method

To fully evaluate our proposed Graph-SLC, we explore its performance in mul-
ticlass AD diagnosis under different combinations of input modality data, with
results provided in Table 2. The 1st to 4th rows in the table show the results
under single modality. It can be observed that using Tau-PET for AD diagnosis
achieves the best performance, followed by FDG-PET and MRI. Furthermore,
the diagnostic performance using multiple modalities (5th to 7th rows) signifi-
cantly surpasses that of using a single modality (1st to 4th). This demonstrates
that our proposed Graph-SLC can effectively extract and utilize complementary
4 https://adni.loni.usc.edu/
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Table 2. The diagnostic performance of our Graph-SLC under different combina-
tions of input modality data. Results are listed as mean ± std through five-fold cross-
validation.

Different settings ACC (%)↑ PRE (%)↑ SPE (%)↑ F1S (%)↑
Only MRI 57.00±1.45 57.47±1.31 55.15±1.49 56.82±1.45
Only FDG-PET 59.01±1.96 60.48±2.64 55.26±4.65 58.05±2.34
Only Aβ-PET 54.18±1.81 56.48±1.82 54.28±3.89 53.58±1.46
Only Tau-PET 62.03±2.36 62.04±2.69 51.59±2.65 57.16±2.34
w/o FDG-PET 64.47±1.77 65.28±1.55 64.36±1.92 65.52±1.77
w/o Aβ-PET 65.07±3.62 65.31±4.04 63.54±4.20 58.00±5.58
w/o Tau-PET 63.23±1.52 64.30±1.44 65.12±1.76 63.08±1.54
Ours 65.18±1.35 65.83±1.53 65.23±1.33 65.27±1.83

information from different modalities for diagnosis, thereby improving diagnostic
performance.

3.3 Comparison with Other Methods

To further assess effectiveness of our proposed Graph-SLC, we further compare
it with six state-of-the-art methods, which can be divided into two classes: 1)
Data imputation methods, including Gao et al. [6], Pan et al. [14], and Wang et
al. [19]; and 2) Latent space learning methods, including Zhou et al. [27], Ning
et al. [13], Chen et al. [5]. All methods use the same experimental settings, and
their quantitative results are given in Table 3.

From Table 3, it can be observed that our Graph-SLC achieved the best
performance among all the methods, with 2.14%, 1.48%, 1.89%, and 3.03% im-
provements in ACC, PRE, SPE, and F1S, respectively, compared to the sub-
optimal method (Chen et al. [5]). This finding strongly validates effectiveness
of our proposed Graph-SLC. Furthermore, our analysis reveals that, on aver-
age, imputation-based methods perform inferiorly compared to the latent space
learning methods. This could be attributed to introduction of excessive redun-
dant and biased information in the synthesized PET images by imputation-based
methods, thereby leading to poor classification results. In contrast, latent space
learning-based methods can achieve good performance, as they effectively miti-
gate generation of redundant information by acquiring a low-dimensional repre-
sentation of a high-dimensional space. This allows for extracting more meaningful
and discriminative features, leading to improved classification performance.

3.4 Ablation Study

We design relevant ablation experiments to analyze effectiveness of the two pro-
posed key modules, including 1) subject-similarity graph embedding and 2) AD-
oriented latent clustering. The experimental results under different combinations
of these two modules are provided in Table 4. As shown in the table, the inte-
gration of subject-similarity graph embedding and AD-oriented latent cluster-
ing significantly enhances the model’s performance, outperforming the scenarios
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Table 3. Quantitative comparison of our Graph-SLC with several state-of-the-art
methods. Results are shown as mean±std through five-fold cross-validation.

Method ACC (%)↑ PRE (%)↑ SPE (%)↑ F1S (%)↑

Missing data
imputation

Gao et al. [6] 58.63±4.43 59.50±2.52 56.43±4.67 55.32±7.74
Pan et al. [14] 59.44±4.01 60.54±3.50 54.64±3.88 58.87±3.99
Wang et al. [19] 62.02±2.29 64.15±2.84 62.71±2.44 61.71±2.54

Latent space
learning

Zhou et al. [27] 60.33±1.85 60.87±1.06 58.26±3.47 60.01±1.34
Ning et al. [13] 61.50±1.88 63.38±1.54 63.48±2.09 60.35±1.87
Chen et al. [5] 63.04±2.47 64.35±2.86 63.34±2.54 62.24±2.72
Ours 65.18±1.35 65.83±1.53 65.23±1.33 65.27±1.83

Table 4. Quantitative results of ablation study. Results are listed as mean±std across
the test set.

Method ACC (%)↑ PRE (%)↑ SPE (%)↑ F1S (%)↑
Ours (w/o embedding, clustering) 61.88±2.91 64.31±3.68 63.40±3.18 60.80±3.64
Ours (w/o embedding) 64.43±2.67 65.67±3.30 65.53±1.34 64.19±2.79
Ours (w/o clustering) 62.38±2.70 64.87±3.30 63.00±3.31 61.28±3.55
Ours 65.18±1.35 65.83±1.53 65.23±1.33 65.27±1.83

without these modules. The incorporation of subject-similarity graph embedding
ensures the latent representation maintains neighborhood relationships during
the learning process, retaining local structural information within the original
space. Simultaneously, the introduction of AD-oriented latent clustering enables
the model to understand the characteristics of class distribution among sub-
jects, resulting in more accurate clustering. Experimental results demonstrate
that removing either module degrades the model’s performance, further indi-
cating importance of these two key strategies. In summary, the combination of
subject-similarity graph embedding and AD-oriented latent clustering plays a
crucial role in improving model performance, offering an effective approach for
multiclass diagnosis tasks.

4 Conclusions

To address the missing data problem in the joint diagnosis of AD when using mul-
timodal PET, we propose a graph-embedded latent space learning and clustering
framework. Specifically, we first use a multimodal reconstruction module to gen-
erate subject-specific latent representations that can comprehensively incorpo-
rate information from different available modalities. Then, a subject-similarity
graph embedding module is used to constrain subject-specific latent represen-
tations to preserve the neighborhood relationships within subjects. Finally, we
employ an AD-oriented latent clustering module to force latent representations
of the same class to be in the same cluster. Experiments on an ADNI dataset
with 2358 subjects show that our proposed model achieves state-of-the-art per-
formance in multiclass AD diagnosis, suggesting effectiveness of our proposed
model in tackling modality-missing issue.
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