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Abstract. Class activation maps- (CAMs-) based image-level weakly
supervised tissue segmentation has became a popular research topic due
to the advantage of its low annotation cost. However, there are still
two challenges exist in this task: (1) low-quality pseudo masks gener-
ation, and (2) training with noisy label supervision. To address these
issues, we propose a novel weakly supervised segmentation framework
with Activation Relocalization and Mutual Learning (ARML). First, we
integrate an Activation Relocalization Scheme (ARS) into classification
phase to more accurately cover the useful areas in initial CAMs. Second,
to deal with the inevitably noisy annotations in pseudo masks gener-
ated by ARS, we propose a noise-robust mutual learning segmentation
model. The model promotes peer networks to capture different char-
acteristics of the outputs, and two noise suppression strategies namely
samples weighted voting (SWV) and samples relation mining (SRM) are
introduced to excavate the potential credible information from noisy an-
notations. Extensive experiments on BCSS and LUAD-HistoSeg datasets
demonstrate that our proposed ARML exceeds many state-of-the-art
weakly supervised semantic segmentation methods, which gives a new
insight for tissue segmentation tasks. The code is available at: https:
//github.com/director87/ARML.

Keywords: Weakly supervised tissue segmentation · Activation relocal-
ization · Noise suppression · Mutual learning

https://github.com/director87/ARML
https://github.com/director87/ARML


2 S. Feng et al.

1 Introduction

Histological assessment of Hematoxylin and Eosin- (H&E-) stained tissue speci-
mens remains the gold standard for cancer diagnosis [14]. With the rapid devel-
opment of deep learning, automatic tissue segmentation has became an essential
part in computational pathology. However, it is time-consuming and costly to
obtain the dense pixel-level annotations of the whole slide image (WSI) with
giga-pixel [6]. Therefore, utilizing a weakly supervised semantic segmentation
(WSSS) method with only image-level to reduce the annotation expenses has
became a research hotspot.

Currently, most mainstream WSSS studies achieve their goals based on class
activation maps (CAMs) [20]. Although CAM can take advantage of localization
clues brought by classification network to achieve pseudo masks generation, it
still inevitably has the shortage of failing to extract precise target boundaries
and makes the generated pseudo masks incomplete, which brings a great chal-
lenge to segmentation task. To cope with this issue, several methods devote to
refine the quality of CAM to obtain fine-grained pseudo masks [2,6,13,4,19]. His-
toSegNet [2] used a series of post-processing steps to correct the target bound-
aries. MLPS [6] creatively proposed progressive dropout attention to discard
the highlighted activations, and push model to focus on non-predominant fea-
tures. AME-CAM [4] aggregated CAMs with different resolutions and optimized
them by contrastive learning. However, the refining process of these methods
is complex and heavily relies on the discriminative activation regions. In con-
trast, we propose the Activation Relocalization Scheme (ARS) to capture con-
textual information from spatial responses in local feature maps and reactivate
the channel-wise minor regions, which can adaptively expand the useful areas of
CAMs.

Since there are unavoidable noisy annotations contained in pseudo masks,
how to deal with them to obtain more accuracy segmentation results during se-
mantic segmentation stage is another existing challenge. URN [10] reweighted the
segmentation loss to suppress noise by uncertainty estimation. OEEM [11] pro-
posed online easy examples mining to filter out the credible predictions. However,
performances of these methods are still limited since the single segmentation net-
work cannot deal with noisy labels very well without extra supervision. From
this point of view, we introduce Mutual Learning (ML) between three networks
during the segmentation phase to mine the useful signals in noisy annotations.
A samples weighed voting (SWV) strategy is utilized to determine potential re-
liable labels and suppress the disagreement ones, and then make one network
serve as teacher to supervise the other two networks via samples relation mining
(SRM) strategy that further restrains the noisy labels.

The major contributions of our work are in three aspects:
• We propose a weakly supervised histological tissue segmentation framework

with Activation Relocalization and Mutual Learning (ARML) to overcome
the existing challenges.

• ARS is proposed to obtain more accuracy pseudo masks, and Mutual Learn-
ing between three networks with SWV and SRM is proposed to effectively
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excavate the reliable samples from noisy annotations for precise segmenta-
tion.

• Our method obtains the state-of-the-art WSSS performance on the BCSS
and LUAD-HistoSeg benchmarks.

2 Methodology

2.1 Framework Overview

The framework of our proposed ARML is shown in Fig. 1. For pseudo masks
generation phase, we first put the input image I into the classification network
Fcls supervised by image-level labels Y to extract the initial CAMs. Then, we
introduce the ARS on feature maps to refine it and finally obtain the pixel-level
pseudo mask M . The multi-label soft margin loss Lcls is leveraged to optimize
the classification prediction. For segmentation phase, we utilize three networks
Fa, Fb and Fc with the same structure and training them concurrently. Due
to the unavoidable noisy signals in M , we propose two denoising strategies to
guide network to select reliable information in the confusing regions. Since the
strategies exerted on the three networks are similar, we take Fa as an example
to introduce in the following sections of paper for the sake of simplicity. First,
we modify the standard cross entropy loss by giving a different weight coefficient
for different predicted samples according to the "opinions" of Fb and Fc. Second,
we design a new loss function to mine the relationship of output logits between
Fa and other two networks, thus further make each network noise-robust.

2.2 Activation Relocalization Scheme

Conventional CAMs generation method suffers from incomplete object regions,
which will sacrifice the performance of semantic segmentation. To address this
issue, we propose the Activation Relocalization Scheme (ARS) to refine initial
CAMs to be more task-friendly. As shown in Fig. 1(a), given a local feature map
f ∈ RC×H×W , the ARS first generate a query map Q ∈ RC′×H×W , a key map
K ∈ RC′×H×W , and a value map V ∈ RC×H×W by three 1 × 1 convolutional
layers. Here, the channel number C ′ is less than C for dimension reduction.
Then, attention maps A ∈ R(H+W−1)×H×W are obtained from Q and K via
similarity operation. This operation aims to calculate the similarity between
different pixels in the spatial dimension, which is defined as:

si,j = QjΦ
⊤
i,j , (1)

where si,j ∈ R(H+W−1)×H×W denotes the similarity correlation, Qj ∈ RC′
is

the feature vector of Q at position j, and Φi,j ∈ RC′
is the i-th element of

Φj ∈ R(H+W−1)×C′
extracted from K, therein i = [1, ..., |Φj |]. Next, we combine

A and feature vectors Ψ ∈ R(H+W−1)×C in V by fusion operation defined as
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Fig. 1. Overall structure of our proposed ARML. (a) Pseudo masks generation phase
with Activation Relocalization Scheme. (b) Tissue segmentation phase with Mutual
Learning and two denoising strategies. For convenience, we regard Fa as the final
segmentation model and only show the noise suppress loss functions for illustration.

Eq. (2) to obtain the enhanced contextual features.

f ′ = f ⊕
H+W−1∑

k=0

AkΨk. (2)

After fusion, we exploit a reactivation attention to restrain the most sensitive
features and expand the non-discrimination features in f ′.

f ′′ = f ′ ⊗ E(Conv(P s
avg(f

′))), (3)

where E is the exponential function e−x to redistribute the features to highlight
the minor responses in the channel dimension, Conv is a 7×7 convolutional layer,
and P s

avg is the spatial average pooling (SAP) operation. In the end, the output
relocalized feature maps f ′′ aggregates the pixel-wise context representations in
spatial dimension and recalibrate activation values of each category in channel
dimension, which are more credible for semantic segmentation.

2.3 Samples Weighted Voting

To deal with noisy annotations, some previous denoising works leveraged the
loss functions to filter the hard samples within confusing areas for segmentation
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stage [12,7]. However, these methods ignored that potential clean annotations
also exist in low quality regions. The accuracy of segmentation model will be
limited if simply discarding these useful information. To address this issue, we
propose the Lswv to reweight predicted pixels based on the outputs of two net-
works by utilizing a voting approach. In details, we denote the logits map gen-
erated by three networks as Pa, Pb, and Pc. Then, we assign a weight for pixels
in Pa according to the vote results. If a predict value in Pb is identical to the
one in Pc, then this pixel in Pa will be seen as a credible one and will be given
a higher weight. Conversely, the pixel will be given a lower weight if there is a
divergence between Pb and Pc. Finally, the Lswv ∈ RH×W can be formulated as
follows:

Lswv(Pa,M) =


−ω ·

H∑
i

W∑
j

log ePa(Mi,j,i,j)

C∑
c=0

ePa(c,i,j)

Pb(i, j) = Pc(i, j)

− 1
ω ·

H∑
i

W∑
j

log ePa(Mi,j,i,j)

C∑
c=0

ePa(c,i,j)

Pb(i, j) ̸= Pc(i, j)

, (4)

where M represents the pseudo mask, (i, j) means the coordinate of a pixel in
logits map, ω ∈ [1,+∞) denotes the weight coefficient, and C is the total number
of categories.

2.4 Samples Relation Mining

To further explore the relationship among the three logits maps and suppress
more incredible responses, we embed the samples relation mining strategy into
our mutual learning framework as well, where one network serves as a teacher to
supervise the other two students. Here, two types of loss functions are proposed
to mine the relations between these models.

The first loss Lpt based on point-wise can be realize as Eq. (5). The motivation
of this loss is that convolutional neural network is tend to fall into overfitting for
easy learning samples. Thus we apply the softmax operation sm to prediction
maps to make results of student models more stable and robust to against noisy
signals.

Lpt =
1

2

( 1

N

N∑
i=1

(
∥sm(Pai)− sm(Pbi)∥2 + ∥sm(Pai)− sm(Pci)∥2

))
. (5)

Different from point-wise loss Lpt only transfers the intra-relation of samples
across different outputs, the second structure-wise loss Lst also considers the
inter-relation of different samples in the same output, which are compounded of
binary distance and ternary angle relations. For binary distance relations, given
a pair of samples {(θi, θj)|i ̸= j} from 2-tuples sample set Θ2, we first calculate
the Euclidean distance D of these two samples. Next, we use D to measure
in both teacher model and student models in our framework, then we get the
distance loss Ldist expressed as Eq. (6). This loss transfers the relationship of
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samples by penalizing distance differences between output representations, which
encourages the student models to excavate the clean samples rather than noisy
ones.

Ldist =
1

2

∑
(θi,θj)∈Θ2

(
H
(
D(Pai, Paj),D(Pbi, Pbj)

)
+H

(
D(Pai, Paj),D(Pci, Pcj)

))
,

(6)
where H is Huber loss (see [9] for detailed definition). Similar to distance rela-
tions, given a triplet of samples {(θi, θj , θk)|i ̸= j ̸= k} from 3-tuples sample set
Θ3, the ternary angle loss Lang can be calculated as follows:

Lang =
1

2

∑
(θi,θj ,θk)∈Θ3

(
H
(
A(Pai, Paj , Pak),A(Pbi, Pbj , Pbk)

)
+H

(
A(Pai, Paj , Pak),A(Pci, Pcj , Pck)

))
,

(7)

where A = cos
〈

θi−θj
∥θi−θj∥2

,
θk−θj

∥θk−θj∥2

〉
denotes the angular differences between sam-

ples. Since angle contains more high-order features than distance, it gives more
guidance to models in learning confusing pixels. Finally, we combine the distance-
wise loss and angle-wise loss together to get the second loss Lst. For an image,
the primary information lies in the structure of the data embedding space which
consists of numerous samples, thus the context meaning of individual sample is
limited. Therefore, we suggest that Lst will get a better performance and choose
it as our final loss for samples relation mining strategy.

Lst = αLdist + βLang. (8)

In the end, the final segmentation loss L for each network can be formulated
as follows, where λ is the hyperparameter to balance two loss functions:

L = (1− λ)Lswv + λLst. (9)

3 Experiments and Results

3.1 Dataset

BCSS contains 23,422 training images, 3,418 validation images and 4,986 testing
images cropped from 151 H&E-stained WSIs of breast cancer [1,6]. There are
four foreground tissue categories in dataset, i.e., tumor (TUM), stroma (STR),
lymphocytic infiltrate (LYM) and necrosis (NEC). To perform weakly supervised
method, each training image only have image-level annotations using one-hot
encoding vectors. Note that background masks are only provided for validation
and testing set and unavailable for training set.
LUAD-HistoSeg includes 17,285 H&E-stained lung adenocarcinoma images
with four tissue categories namely tumor epithelial (TE), necrosis (NEC), lym-
phocyte (LYM) and tumor-associated stroma (TAS) [6]. Following the original
partition, we use 16,678 images with image-level annotations for training, 300
and 307 images with pixel-level annotations for validation and testing, respec-
tively.
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Table 1. Comparison with state-of-the-art weakly supervised methods. The results are
reported in mean ± std. † means statistical significant with the best performance of
existed methods (p < 0.05 under two-tailed T-test).

BCSS
Method Backbone TUM STR LYM NEC mIoU Dice ACC

HistoSegNet [2] VGG16 33.14 ± 1.61 46.46 ± 1.37 29.05 ± 2.93 28.83 ± 3.42 34.37 ± 0.96 50.04 ± 0.78 56.41 ± 0.77
ReCAM [5] ResNet50 74.34 ± 0.61 68.37 ± 0.89 47.17 ± 2.07 56.91 ± 3.35 61.70 ± 0.42 75.76 ± 0.29 81.15 ± 0.45
GradCAM++ [3] ResNet38 74.12 ± 0.59 67.61 ± 0.81 54.68 ± 1.43 57.18 ± 1.94 63.39 ± 0.35 77.31 ± 0.24 81.30 ± 0.66
AME-CAM [4] ResNet50 77.29 ± 0.55 72.20 ± 0.31 56.98 ± 1.33 60.44 ± 0.71 66.73 ± 0.51 79.75 ± 0.38 83.90 ± 0.30
AMR [13] ResNet50 78.75 ± 0.34 72.12 ± 0.15 59.31 ± 0.84 57.80 ± 1.30 66.99 ± 0.44 79.91 ± 0.29 84.44 ± 0.18
OEEM [11] ResNet38 79.11 ± 0.37 72.88 ± 0.79 54.34 ± 1.61 63.07 ± 2.43 67.35 ± 0.58 80.11 ± 0.42 84.41 ± 0.24
MLPS [6] ResNet101 78.53 ± 0.60 71.74 ± 0.69 60.71 ± 0.52 60.51 ± 1.11 67.87 ± 0.45 80.62 ± 0.31 84.26 ± 0.38
TPRO [19] MixTransformer 80.10 ± 0.59 73.34 ± 0.21 56.26 ± 1.06 64.26 ± 1.39 68.49 ± 0.24 80.95 ± 0.19 85.03 ± 0.16

ARML (Ours) MixTransformer 79.97 ± 0.41 73.09 ± 0.38 57.72 ± 0.95 65.02 ± 0.33† 68.95 ± 0.39† 81.33 ± 0.22† 85.08 ± 0.44
ARML (Ours) ResNet38 78.87 ± 0.55 73.18 ± 0.73 58.85 ± 1.04 66.55 ± 0.36† 69.36 ± 0.41† 81.68 ± 0.25† 84.88 ± 0.67
ARML (Ours) ResNeSt101 79.20 ± 0.30 73.83 ± 0.17† 60.25 ± 0.14 68.96 ± 0.44† 70.56 ± 0.19† 82.48 ± 0.10† 85.63 ± 0.17†

LUAD-HistoSeg
Method Backbone TE NEC LYM TAS mIoU Dice ACC

HistoSegNet [2] VGG16 45.59 ± 0.83 46.30 ± 1.43 58.28 ± 1.95 50.82 ± 0.87 50.25 ± 0.66 63.43 ± 0.51 66.82 ± 0.46
ReCAM [5] ResNet50 73.81 ± 0.46 58.72 ± 0.77 67.24 ± 1.61 66.77 ± 1.04 66.63 ± 0.53 79.85 ± 0.36 81.80 ± 0.57
GradCAM++ [3] ResNet38 73.48 ± 0.41 60.02 ± 0.68 68.97 ± 0.92 66.53 ± 1.13 67.25 ± 0.48 80.32 ± 0.35 81.83 ± 0.62
AME-CAM [4] ResNet50 74.64 ± 0.32 67.58 ± 0.53 69.77 ± 1.18 68.47 ± 0.97 70.11 ± 0.66 82.40 ± 0.54 83.07 ± 0.23
AMR [13] ResNet50 74.89 ± 0.18 67.47 ± 0.37 70.55 ± 0.75 68.67 ± 0.81 71.45 ± 0.39 83.59 ± 0.28 83.29 ± 0.41
OEEM [11] ResNet38 76.96 ± 0.27 74.71 ± 0.37 72.30 ± 2.20 71.30 ± 1.52 73.92 ± 0.44 84.99 ± 0.30 85.13 ± 0.89
MLPS [6] ResNet101 77.68 ± 0.51 76.95 ± 0.58 72.40 ± 0.84 71.81 ± 0.77 74.71 ± 0.41 85.50 ± 0.30 85.45 ± 0.81
TPRO [19] MixTransformer 75.85 ± 0.47 81.94 ± 0.95 74.66 ± 1.25 71.27 ± 0.46 75.90 ± 0.44 86.16 ± 0.28 85.56 ± 0.19

ARML (Ours) MixTransformer 77.23 ± 0.43 80.40 ± 0.72 75.43 ± 1.53† 71.43 ± 0.66 76.13 ± 0.47 86.38 ± 0.29 85.62 ± 0.37
ARML (Ours) ResNet38 77.87 ± 0.41 81.89 ± 0.62 75.21 ± 0.42† 72.31 ± 0.13† 76.82 ± 0.37† 86.84 ± 0.22† 86.13 ± 0.28†

ARML (Ours) ResNeSt101 78.54 ± 0.28† 80.34 ± 0.27 75.29 ± 0.45† 74.29 ± 0.48† 77.11 ± 0.33† 87.01 ± 0.22† 86.42 ± 0.24†

Table 2. Ablation study of different components in ARML.

Baseline ARS SWV SRM TUM STR LYM NEC mIoU Dice ACC
✓ 76.76 ± 0.94 72.17 ± 0.49 58.18 ± 2.04 62.24 ± 1.60 67.33 ± 0.29 80.24 ± 0.20 83.80 ± 0.38
✓ ✓ 78.17 ± 0.57 72.83 ± 0.57 58.53 ± 0.47 62.35 ± 1.61 67.97 ± 0.28 80.67 ± 0.22 84.46 ± 0.33
✓ ✓ ✓ 78.45 ± 0.61 73.10 ± 0.48 58.75 ± 1.76 66.34 ± 0.17 69.16 ± 0.27 81.54 ± 0.17 84.75 ± 0.39
✓ ✓ ✓ 79.45 ± 0.28 71.89 ± 0.28 59.96 ± 0.66 63.73 ± 0.41 68.76 ± 0.55 81.25 ± 0.33 84.62 ± 0.10
✓ ✓ ✓ ✓ 79.20 ± 0.30 73.83 ± 0.17 60.25 ± 0.14 68.96 ± 0.44 70.56 ± 0.19 82.48 ± 0.10 85.63 ± 0.17

3.2 Implementation Details

All experiments are implemented in PyTorch 1.11 framework on Ubuntu 20.04
server with an NVIDIA RTX A5000 GPU. For pseudo masks generation phase,
ResNet38 [15] is selected for classification backbone, with the learning rate
of 1 × 10−2 under a polynomial decay policy in 20 epochs. For segmentation
phase, we utilize three different backbones (MixTransformer [16], ResNet38 and
ResNeSt101 [18]) to verify our method. During training, we use the SGD opti-
mizer for each network with the learning rate of 5×10−3, momentum of 0.9 and
weight decay of 5×10−4 in 10 epochs. For SWV, weight hyperparameter ω is set
to 2. To balance the distance and angle loss terms in SRM, we set α to 30 and
β to 60. For L, we set λ to 0.2 in practise. During the model inference phase,
category-wise intersection over union (IoU), mean IoU (mIoU), Dice score, and
pixel-level accuracy (ACC) are adopted as the metrics.
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Table 3. Effectiveness of different values
of ω in SWV. N/A denotes not utilizing
SWV for training.

ω mIoU Dice
N/A 67.97 ± 0.28 80.67 ± 0.22
1 69.22 ± 0.22 81.54 ± 0.15
2 70.56 ± 0.19 82.48 ± 0.10
3 70.00 ± 0.24 82.13 ± 0.14
5 69.52 ± 0.29 81.78 ± 0.20
+∞ 69.69 ± 0.33 81.90 ± 0.19

Table 4. Performance of using different
relation mining strategies. CE means the
baseline with standard cross entropy loss.

mIoU Dice
CE 67.97 ± 0.28 80.67 ± 0.22
KL [8] 68.22 ± 0.84 80.92 ± 0.57
CRL [17] 68.68 ± 0.58 81.20 ± 0.41
Lpt 69.83 ± 0.33 82.00 ± 0.17
Lst 70.56 ± 0.19 82.48 ± 0.10

3.3 Comparison Study

We compare our ARML with other eight state-of-the-art weakly supervised seg-
mentation methods under the same settings mentioned in Section 3.2, and the
results are listed in Table 1. It is evident that our method exceeds other models
on both two datasets, even with three different backbones. With the ResNeSt101
backbone, our method achieves the highest mIoU at 70.56% and 77.11% on BCSS
and LUAD-HistoSeg respectively, which is 2.07% and 1.21% higher than the best
existing method TPRO [19] (p < 0.05). The results are proved that our ARML
is superior to WSSS for histological tissues. Qualitative comparisons on two
datasets are available at Supplementary Material.

3.4 Ablation Study

We conduct several ablation studies on BCSS dataset as described in the fol-
lowing parts. More ablation studies can be found in Supplementary Material.
Table 2 shows the specific results for each module of our ARML. When adding
the ARS to conventional CAM baseline, the segmentation metrics have increased.
Compared with the model without denoising strategies, the SWV and SRM has
improved the mIoU by 1.19% and 0.79%, respectively. By combining these two
strategies, the mIoU is further improved. In a word, each core component in our
method plays a crucial role to enhance the segmentation capacity of model.

To analysis the effectiveness of weight coefficient ω in SWV that reweights
the predicted pixels, we set different values of ω to evaluate the segmentation
performance of our model. The results are shown in Table 3. When ω → +∞, it
means the pixels with inverse voting results between two networks are discarded
in supervising the third network. We can observe that when the settings of ω is
2, the model achieves the best mIoU and Dice score than other values.

To verify the practicability of relation mining loss introduced in Section 2.4,
we compare two common relation mining strategies KL [8] and CRL [17] with
our proposed Lpt and Lst. As shown in Table 4, our relation mining strategies
are significantly better than KL and CRL, which is benefitting from the credible
noise-robust designment. Among them, structure-wise relation mining loss Lst

performs the best, which surpasses 2.59% and 1.81% in terms of mIoU and Dice
compared to the cross entropy loss. This is due to the essential guidance role of
binary distance and ternary angle inter-relation features.
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4 Conclusion

In weakly supervised histological tissue segmentation, there are two existing
challenges about low-quality pseudo masks generation and training with noisy
labels. To solve these problems, we propose the Activation Relocalization Scheme
to obtain more accurate pseudo masks. Then, we utilize Mutual Learning with
two denoising strategies to mitigate the impact of noisy annotations. Experi-
mental results show that our method addresses these matters effectively and
achieves new state-of-the-art performance on two histological datasets, which
make a contribution to the research community of computational pathology.
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