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Abstract. The graphical representation of the brain offers critical in-
sights into diagnosing and prognosing neurodegenerative disease via rela-
tionships between regions of interest (ROIs). Despite recent emergence of
various Graph Neural Networks (GNNs) to effectively capture the rela-
tional information, there remain inherent limitations in interpreting the
brain networks. Specifically, convolutional approaches ineffectively ag-
gregate information from distant neighborhoods, while attention-based
methods exhibit deficiencies in capturing node-centric information, par-
ticularly in retaining critical characteristics from pivotal nodes. These
shortcomings reveal challenges for identifying disease-specific variation
from diverse features from different modalities. In this regard, we pro-
pose an integrated framework guiding diffusion process at each node by
a downstream transformer where both short- and long-range properties
of graphs are aggregated via diffusion-kernel and multi-head attention
respectively. We demonstrate the superiority of our model by improving
performance of pre-clinical Alzheimer’s disease (AD) classification with
various modalities. Also, our model adeptly identifies key ROIs that are
closely associated with the preclinical stages of AD, marking a significant
potential for early diagnosis and prevision of the disease.

1 Introduction

Amyloid deposition and neurofibrillary tangles disrupt neural connections, in-
dicating the potential of using brain connectomes in neuroimaging to identify
early signs of brain disorders such as Alzheimer’s Disease (AD) [4,19,11,15]. The
white-matter connectome establishes structural interconnections between dis-
tinct anatomical regions of interest (ROI) within the brain, and it constructs a
brain network per subject. As the brain network guides pathological variation
on the ROIs [17], it is critical to incorporate the connection information in ad-
dition to regional measures from other images, e.g., magnetic resonance image
(MRI) and positron emission tomography (PET) scans with various tracers, to
characterize preclinical/early symptoms of AD.

A typical representation of a brain network involves a graph, mathematically
formulated by its nodes and edges. The nodes correspond to each ROI, and con-
nectome features, e.g., number of tracts between ROIs and fractional anisotropy
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(FA), determine the edges with strength (i.e., edge weight). The graph repre-
sentations of brain networks, together with image-derived measurements at each
ROI, naturally lift the utilization of a graph neural network (GNN) for disease
classification and characterization.

Traditionally well-known GNNs [12,22] incorporate the structure of graphs
via graph convolution, and later methods use kernel convolutions based on dif-
fusion process to obtain better representations [26,7,27,18]. These conventional
methods rely on the homophily condition that node features locally connected
by the edges behave similarly, overlooking the relationships between nodes far
apart. Graph Transformers use global attention to capture far-distance influence
beyond neighboring nodes within the graph [24,25,23], however, these methods
often disregard sufficient expressive power of the central nodes, lacking interpre-
tation of the result. The problem becomes more challenging when using mul-
tiple biomarker magnitudes as nodal features, as the interaction among multi-
ple biomarkers and their diverse characteristics introduce heterogeneity, further
complicating the analysis.

Therefore, it is necessary to develop an interpretable multi-modal method
to capture both local characteristic and global graph-level information. The ar-
chitecture we propose, i.e., GNN with Transformer-guided Adaptive Diffusion
(GTAD), addresses the issues above by learning node-centric parameters of a dif-
fusion kernel which are governed by a transformer. The encoder part of GTAD
first obtains locally-effective representation of each node per imaging modality
with a heat-kernel, which is later mixed by multi-head attention in the trans-
former to achieve globally-effective representation for classification. The node-
wise kernel parameter as well as the attention scores let us interpret the local
and global graph characteristics learnt by the model, especially when each node
corresponds to anatomical ROI in the brain network.

The key contributions of our work are 1) proposing a novel framework
to aggregate both short- and long-range properties for better prediction of graph
labels, 2) demonstrating superior performance on graph classification in com-
parison to the state-of-the-art methods, and 3) showing interpretability on the
brain networks in a scenario with multiple imaging biomarkers. Experiments on
structural brain networks from Diffusion Tensor Imaging (DTI) and ROI mea-
sures from functional imaging from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study show that the developed framework yields practical results for
pre-clincal AD classification and interpretation to facilitate early diagnosis and
prevention of AD.

2 Method

Prelim: Graph Kernel Convolution. An undirected graph G = {V,E} with
N nodes comprises a node set V and an edge set E. A symmetric adjacency
matrix A and a diagonal degree matrix D can be computed from E, whose
elements encode connectivity among its nodes and the volume of each node
respectively. A graph Laplacian is defined as L = D − A, which is real and
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Fig. 1. Illustration of GTAD. A graph (as L̂) and node feature xm are inputted to
m-th encoder at the adaptive convolution block. Then, all outputs {Hm

Z }Mm=1 from this
block are inputted to the self-attention block, producing an output BP . Finally, the
BP is entered into a classifier fR which yields a prediction Ŷ . To adaptively adjust
the node-wise scales for each modality, the loss L from Ŷ is backpropagated to update
m-th encoder with scales sm.

positive semi-definite. It has a complete set of orthonormal eigenvectors U =
[u1|u2|...|uN ] and corresponding real and non-negative eigenvalues 0 = λ1 ≤
λ2 ≤ ... ≤ λN , so does the normalized Laplacian L̂ = D−1/2LD−1/2.

From Spectral Graph Theory [2], the choice of a kernel function determines
specific graph characteristics. For example, a prominent heat-kernel between
nodes p and q is spanned by U as

hs(p, q) =
N∑
i=1

e−sλiui(p)ui(q) (1)

where ui is the i-th eigenvector. The kernel e−sλi captures smooth transition
between the nodes within the scale s as a low-pass filter. Using convolutional
theorem [14], graph Fourier transform, i.e., x̂ = UTx, defines the graph convo-
lution ∗ of a signal x(p) with a filter hs as

hs ∗ x(p) =
N∑
i=1

e−sλi x̂(i)ui(p) (2)

whose band-width is controlled by the scale s.
Modality-wise Adaptive Convolution Block. Consider a graph G given as a
normalized Laplacian L̂ ∈ RN×N , a set of features (i.e., imaging measures) X =
{xm}Mm=1 defined on N nodes from M modalities, a set of trainable multi-variate
scales {sm}Mm=1 where sm ∈ RN and a graph label Y . To obtain representations
from individual modality, encoders from our model take L̂ and xm for m ∈
{1, . . . ,M} as inputs and perform convolution with heat kernel in Eq. (2) across
all nodes and modalities respectively. Each encoder consists of multiple graph
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convolution layers that adaptively aggregate features for each node with a non-
linear activation function σz as

Hm
z = σz(e

−smL̂Hm
z−1W

m
z ) (3)

where Hm
z is an output from z-th convolution layer for m-th modality with Hm

0 =
xm, and Wm

z is a weight matrix. Within our framework, sm is made trainable
to capture local characteristic of individual node for different modalities. Since
the Eq. (3) is an operation in a single convolution layer, better representation
for the original feature xm can be achieved by stacking Z of them.
Modality-wise Self-Attention Block. The obtained embeddings {Hm

Z }Mm=1

are inputted to an attention block to compute node-wise attention scores. Here,
the multi-head self-attention module is inherited from the transformer layer [21].
Unlike typical use of transformer [5,6], each head is assigned to an individual
modality to integrate long-range information from other nodes, which is not
captured in the convolution block.

The input of attention module consists of query Qm ∈ RN×C , key Km ∈
RN×C , and value V m ∈ RN×C from modality-wise embedding Hm

Z , and C
is the dimension for hidden units. The self-attention scores are computed as
QmKmT /

√
C, and softmax σ is applied to obtain weights on the values. Using

the self-attention scores, a self-attention value is computed as

ϕ(Qm,Km, V m) = σ(
QmKmT

√
C

)V m. (4)

As a single attention head is assigned to a single modality, the global char-
acteristics for all modalities is averaged with a multi attention function as
Φ(Q,K, V ) = [h1|h2| . . . |hm]WΦ where hm = ϕ(QmWQm

,KmWKm

, V mWV m

).
Here, WQm

, WKm

, WV m

and WΦ are weight matrices for Qm, V m, Km and Φ(·)
respectively. Thus, multi-modal self-attention enables the model to jointly attend
to information from different modalities across various ROIs in long-range.

The attention block contains a fully connected feed-forward module Ψ(·),
which consists of multiple linear transformations with a non-linear activation
function in between. To stabilize learning process and improve generalization,
residual connections [8] are used, followed by layer normalization fL[·] [1]. There-
fore, a comprehensive context across all nodes is captured as

Bp = fL[fL[Bp−1 + Φ(Bp−1)] + Ψ(fL[Bp−1 + Φ(Bp−1)])] (5)

where Bp is an output from p-th attention layer, and multi-modal representations
{Hm

Z }Mm=1 are used as Q, K and V for B0. To capture complex dependencies in
the input modalities, multiple attention layers, e.g., P -layers, can be stacked.
Transformer-Guided Scale Update. Consider a set of graphs {Gt}Tt=1 with
corresponding labels {Yt}Tt=1, and learning a classification model finds a function
f(Gt) = Yt. For this, a downstream classifier fR(·) takes the BP from Trans-
former as an input and returns a prediction Ŷtj at the j-th class for the t-th
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sample, which is computed via Softmax as

Ŷtj =
fR(BP )tj∑

j′∈J fR(BP )tj′
(6)

where J is a class size. To update a scale smn at the n-th node for the m-
th encoder, the objective function is defined by cross-entropy between the true
value Ytj and the prediction Ŷtj . With an ℓ1 norm regularization on smn to impose
positive scale for the heat-kernel, the overall objective function L is defined as

L = − 1

T

T∑
t=1

J∑
j=1

Ytj lnŶtj + α
1

M

M∑
m=1

N∑
n=1

1s<0|smn | (7)

where α is a user-parameter and 1 is an indicator function. Update of the
modality-specific scales is performed as s ← s − β ∂L

∂s via gradient-descent with
a learning rate β.

3 Experiments

Dataset. Neuroimages of T=919 preclinical AD subjects in the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) study were used for the experiment. Each
brain was partitioned into 148 cortical regions and 12 sub-cortical regions with
Destrieux atlas [3] with MRI, and Tractography on diffusion weighted imaging
(DWI) was applied to calculate the number of white matter fibers connecting
the 160 brain regions to construct brain network. On the same parcellation,
region-wise imaging features such as Standard Uptake Value Ratio (SUVR) [20]
of metabolic intensity from FDG-PET, β-Amyloid protein from Amyloid-PET
and cortical thickness from MRI were measured. Each subject was assigned to
Control (CN, T=333), Significant Memory Concern (SMC, T=172) and Early
Mild Cognitive Impairment (EMCI, T=414) for group comparisons.
Setup. We designed various 3-way classifications to classify the pre-clinical
groups using various combinations of biomarkers. 5-fold cross validation was
used to obtain unbiased results, and accuracy, precision and recall in their mean
were computed for evaluation. As the baselines, we categorized GNNs into three
groups and adopted them; 1) Convolution-based GNNs such as GCN [12] and
GAT [22], 2) GNNs with graph diffusion such as GraphHeat [26], GDC [7], ADC
[27] and LSAP [18], and 3) Graph transformers such as NodeFormer [24], DIF-
Former [23] and SGFormer [25]. More details are given in the supplementary.
Classification Result. The performance comparisons between our model and
nine baselines across four experiments are reported in Table 1. As shown in Ta-
ble 1, aggregating both local (i.e., short-range) features by adaptively learned
modality-wise scales and global (i.e., long-range) information by global atten-
tions performed the best in all experimental cases, and accuracy from most
experiments showed over 96% except for the case using cortical thickness and
β-Amyloid. Notably, GTAD outperformed the outstanding transformers in pre-
clinical AD prediction, indicating that our model is more suitable on the brain
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Table 1. Preclinical AD classification performance (CN/SMC/EMCI) on ADNI data.

Modalities Cortical Thickness & β-Amyloid Cortical Thickness & FDG
Methods Accuracy Precision Recall Accuracy Precision Recall
GCN [12] 0.861±0.04 0.772±0.06 0.780±0.06 0.873±0.02 0.802±0.02 0.813±0.03
GAT [22] 0.896±0.01 0.827±0.03 0.839±0.02 0.882±0.02 0.811±0.03 0.844±0.03
GraphHeat [26] 0.868±0.02 0.777±0.05 0.797±0.04 0.887±0.03 0.821±0.04 0.834±0.03
GDC [7] 0.858±0.02 0.767±0.03 0.786±0.04 0.842±0.01 0.743±0.02 0.765±0.03
ADC [27] 0.906±0.02 0.835±0.03 0.861±0.04 0.896±0.01 0.831±0.01 0.847±0.02
LSAP [18] 0.911±0.01 0.847±0.03 0.872±0.02 0.934±0.02 0.899±0.05 0.904±0.03
NodeFormer [24] 0.916±0.02 0.856±0.04 0.865±0.02 0.944±0.01 0.913±0.03 0.921±0.02
DIFFormer [23] 0.930±0.01 0.877±0.03 0.900±0.02 0.954±0.01 0.923±0.02 0.944±0.01
SGFormer [25] 0.941±0.01 0.894±0.03 0.911±0.02 0.959±0.01 0.931±0.01 0.945±0.01
GTAD (Ours) 0.945±0.02 0.901±0.03 0.919±0.02 0.963±0.01 0.935±0.02 0.948±0.01
Modalities β-Amyloid & FDG All Imaging Features
Methods Accuracy Precision Recall Accuracy Precision Recall
GCN [12] 0.880±0.01 0.806±0.02 0.813±0.02 0.888±0.02 0.816±0.02 0.826±0.02
GAT [22] 0.877±0.02 0.815±0.03 0.814±0.04 0.912±0.01 0.858±0.02 0.864±0.02
GraphHeat [26] 0.880±0.02 0.804±0.05 0.824±0.03 0.893±0.02 0.824±0.03 0.839±0.03
GDC [7] 0.866±0.02 0.787±0.03 0.790±0.03 0.867±0.02 0.779±0.03 0.799±0.02
ADC [27] 0.910±0.01 0.865±0.02 0.856±0.02 0.904±0.02 0.855±0.04 0.858±0.02
LSAP [18] 0.922±0.02 0.862±0.05 0.893±0.03 0.912±0.01 0.844±0.04 0.879±0.02
NodeFormer [24] 0.931±0.01 0.887±0.03 0.893±0.03 0.938±0.02 0.900±0.03 0.902±0.03
DIFFormer [23] 0.951±0.01 0.919±0.03 0.933±0.02 0.953±0.01 0.920±0.02 0.936±0.02
SGFormer [25] 0.954±0.01 0.923±0.03 0.936±0.02 0.951±0.01 0.911±0.02 0.933±0.02
GTAD (Ours) 0.962±0.01 0.935±0.02 0.946±0.02 0.963±0.01 0.943±0.01 0.941±0.02

network even under difficult conditions (i.e., prediction for early stages in AD
given multiple imaging scans). Also, the stability of our model can be explained
by low standard deviations for all evaluations within 5-folds.

4 Interpretation of the Trained GTAD

Discussion on the Scales. In the pre-clinical AD classification, the trained
model yields node-wise optimized scales, where each node corresponds to a
specific ROI in the brain. As the trained scales denote the optimal ranges of
ROI-wise neighborhood for each modality, they represent modality-wise char-
acteristics across all ROIs providing the interpretability of GTAD. Therefore,
while ROIs with small trained scales require information from neighboring ROIs
on the classification, ROIs with large scales need distant features as they are
less effective individually. The learned scales on brain regions per modality are
visualized in Fig. 2. Even for the same region in the brain, the local ranges are
set differently depending on the modalities, which provides multi-dimensional
understandings of subnetwork for AD progression.

In addition to the visualization of localized scales, 8 ROIs with the smallest
scales for each modality are listed in the bottom of Fig. 2. Using the ROI-wise
optimized scales with all biomarkers, GTAD selected most independent ROIs in
the subcortical regions (i.e., thalamus, putamen and globus pallidus), temporal
regions (i.e., inferior, superior and occipito temporal regions), frontal regions
(i.e., middle, superior and orbital regions) and other important regions that are
closely linked to AD. Based on these results, the ROIs with small scales are
significantly important in interpreting the classification results depending on
the characteristics that each imaging modality captures.



Multi-Modal GNN with Transformer-guided Adaptive Diffusion 7

Cortical Thickness β-Amyloid FDG

Cortical Thickness β-Amyloid FDG
ROI Scale ROI Scale ROI Scale
(R) S.cingul.Marginalis 0.0089 (R) Lat.Fis.ant.Horizont 0.0662 (L) sub.putamen 0.0187
(L) G&S.occipital.inf 0.0153 (L) S.oc.middle&Lunatus 0.0771 (L) G&S.cingul.Mid.Ant 0.0231
(L) S.front.sup 0.0252 (R) S.calcarine 0.0868 (R) S.temproal.sup 0.0254
(R) S.suborbital 0.0254 (R) sub.thalamus 0.1124 (R) sub.globus.pallidus 0.0255
(L) S.oc.temp.med&Lingual 0.0387 (R) G.oc.temp.lat.fusifor 0.1159 (L) sub.globus.pallidus 0.0303
(R) S.pericallosal 0.0387 (L) S.calcarine 0.1166 (R) G&S.cingul.Mid.Ant 0.0451
(R) S.front.middle 0.0420 (R) G.temporal.inf 0.1208 (L) S.temporal.sup 0.0609
(R) G.parietal.sup 0.0500 (R) S.orbital.lateral 0.1224 (L) S.calcarine 0.0662

Fig. 2. Top: Visualization of learned scales on the cortical regions of left (top) and
right (bottom) hemispheres. Bottom: 8 Localized ROIs with the smallest trained scales
for classification. (L) and (R) denote left and right hemisphere, respectively.

Cortical Thickness β-Amyloid FDG
ROI IR ROI IR ROI IR
(L) G.oc.temp.med.Lingual 23.13 % (R) G.oc.temp.med.Lingual 28.75 % (R) G.oc.temp.med.Lingual 30.00 %
(R) sub.putamen 15.63 % (R) G.subcallosal 16.88 % (L) S.collat.transv.post 25.00 %
(R) S.interm.prim.Jensen 11.88 % (R) sub.putamen 14.38 % (R) S.collat.transv.post 08.13 %
(R) S.front.inf 07.50 % (L) Pole.occipital 10.63 % (R) sub.hippocampus 06.25 %
(L) sub.globus.pallidus 06.88 % (R) S.collat.transv.post 05.63 % (R) G.subcallsoal 05.63 %

Fig. 3. Top: Distribution of attention scores across all brain regions with cortical thick-
ness (left), β-Amyloid (center) and FDG (right). Bottom: Corresponding ROIs with
the 5 highest attention scores for classification. Importance Rate (IR) indicates how
many ROIs pay attention. (L) and (R) denote left and right hemisphere, respectively.

Pre-clinical AD via ROI Attention. From the attention block, each ROI
gains long-range characteristics from other ROIs by modality-wise attention
mechanism. In this regard, most relevant ROIs in preclinical AD prediction can
be detected by total attention scores that represent the intensity of attention at
each ROI in the brain. Here, the total attention score is defined as the result
of calculating how many ROIs give the highest attention score to the corre-
sponding ROI. In Fig. 3, distributions of these scores per ROI show which ROIs
are making long-range influences. Since the distributions of total attention score
vary across all modalities, we can explain which ROI is most important from a
specific modality in making predictions.
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Table 2. Performance comparisons of different blocks. For attention block, our multi-
modal (MM) attention and existing position-wise attention are compared.

Convolution Block MM Attention Accuracy Precision Recall

Multi-Layer Perceptron ✗ 0.939±0.03 0.893±0.05 0.913±0.04
✓ 0.947±0.02 0.906±0.04 0.933±0.02

Graph Convolution Layer ✗ 0.899±0.01 0.835±0.03 0.849±0.03
✓ 0.900±0.01 0.834±0.03 0.852±0.02

Adaptive Convolution Layer (Ours) ✗ 0.945±0.03 0.903±0.05 0.922±0.04
✓ 0.963±0.01 0.943±0.01 0.941±0.02

Top 5 ROIs with the highest importance rate, i.e., the ratio of total attention
scores, are listed in the bottom of Fig. 3. Notably, Lingual gyrus was detected
with the highest importance rate from all modalities in common. Lingual gyrus,
which is especially related to processing logical order of events and encoding
visual memories, is belong to temporal regions and highly linked to AD [10,13].
In particular, hippocampus showed a high importance rate in FDG, and putamen
also simultaneously exhibited a high score in Cortical Thickness and β-Amyloid.
These regions are one of the first areas to be affected in AD, indicating that they
are closely associated with pre-clinical AD [16,9]. From these results, we can
observe the key regions in distinguishing the progressions of neurodegenerative
brain diseases through modality-wise attentions.
Ablation Study on the Blocks. To explore the effect of each block, ablation
study on convolution types and attention types for preclinical AD classification
is given in Table 2. For the convolution block, Multi-Layer Perceptron (MLP),
Graph Convolution and Adaptive Graph Convolution are compared with a choice
of multi-head or position-wise attention which was obtained by inputting con-
catenated features into a single encoder [21]. The flexible capture of local prop-
erties for each node using adaptive graph convolution exhibits better expressive
power with 94.5% accuracy. This metric was boosted up to 96.3% by the multi-
modal attention, demonstrating capturing local and global features with separate
blocks but training them jointly if highly effective. As the MLP connects all ROIs
globally and the Graph Convolution is not adaptively guided by the transformer,
the effect of the multi-modal attention was very marginal.

5 Conclusion

In this work, we proposed a novel end-to-end framework GTAD to dynami-
cally define node-centric ranges per imaging modality via diffusion kernel, guided
by a subsequent transformer. Our framework captures local characteristics on
graphs by flexibly optimizing node-wise scales separately on imaging modalities,
and obtains a global representation by employing multi-modal self-attention,
which guides the model to better prediction. Leveraging multiple imaging mea-
sures, GTAD demonstrates superiority as evidenced by improved performance in
preclinical AD classification, and the results identifies disease-specific variation
through AD-specific key ROIs in the brain.
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