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Abstract. We propose MRScore, an innovative automatic evaluation
metric specifically tailored for the generation of radiology reports. Tra-
ditional (natural language generation) NLG metrics like BLEU are in-
adequate for accurately assessing reports, particularly those generated
by Large Language Models (LLMs). Our experimental findings give sys-
tematic evidence of these inadequacies within this paper. To overcome
this challenge, we have developed a unique framework intended to guide
LLMs in evaluating radiology reports, which was created in collaboration
with radiologists adhering to standard human report evaluation proce-
dures. Using this as a prompt can ensure that the LLMs’ output closely
mirrors human analysis. We then used the data generated by LLMs to
establish a human-labeled dataset by pairing them with accept and reject
samples, subsequently training the MRScore model as the reward model
with this dataset. MRScore has demonstrated a higher correlation with
human judgments and superior performance in model selection when
compared with traditional metrics. Our code is available on GitHub at:
https://github.com/yunyiliu/MRScore.

Keywords: Radiology Report Generation · Evaluation metrics · Large
Language Models · Reward Model.

1 Introduction

Automated assessment of text generation systems, such as those used in radi-
ology report generation, typically involves the comparison of generated reports
against reference reports to gauge semantic accuracy. However, widely utilized
metrics, such as the BLEU metric [16], primarily quantify n-gram matches,
thereby neglecting the critical aspects of lexical and structural diversity that
are essential for preserving meaning. Currently, there are two typical shortcom-
ings found in n-gram-based evaluation metrics [10]. Firstly, these metrics often
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misjudge paraphrasing due to rigid pattern matching. For instance, traditional
metrics, such as the BLEU and METEOR [18], may erroneously favor a radiol-
ogy report’s expression like “patient exhibits no symptoms” over a semantically
identical phrase “symptom-free patient.” This discrepancy arises because these
metrics penalize deviations from the reference structure, regardless of seman-
tic equivalence. Various approaches address this challenge. For instance, Bert
Score [25], in contrast, calculates similarity with contextualized token embed-
ding, proven to detect paraphrasing more effectively. Secondly, traditional n-
gram approaches can miss critical semantic nuances in sentence structure. For
example, if one report states “No evidence of pathology was observed follow-
ing the MRI scan," and another says “Following the MRI scan, no evidence of
pathology was observed," BLEU will inadequately penalize this variation, de-
spite both sentences conveying the same meaning. Contextualized embeddings,
however, are adept at capturing such nuances in sentence structure and order.

This study introduces MRScore, an innovative metric designed for evalu-
ating automated radiology report generation. Developed in collaboration with
professional radiologists, MRScore is underpinned by a framework that articu-
lates their expert rules and priorities for report assessment. Our analysis first
identified the limitations of existing evaluation metrics. To address these gaps,
we created MRScore as a bespoke framework for evaluating radiology reports.
We trained MRScore using a reward model, which necessitated the development
of a human-ranked dataset. This was achieved by employing our error-based
evaluation framework as a prompt to guide GPT-4 in generating human-like
evaluations. Using this framework and 1,000 ground truth reports, we generated
3,000 predicted datasets across three distinct scoring levels in seven criteria out-
lined in our evaluation framework. These will be detailed later in this paper. We
assessed the human correlation of this dataset by having a radiologist score 100
randomly selected reports. With confirmed high human correlation, this dataset
was then used to train our reward model. During the training preparation, we
paired the reports as accept, reject, with ‘accept’ denoting the report with the
higher score and ‘reject’ the lower. We also introduced a margin to indicate the
score difference between the paired reports, providing the model with a measure
of the distance between accepted and rejected reports. For training, we em-
ployed Mistral-7B-instruct [8] as our pre-trained model. To validate our model,
we scored 100 sample reports generated by GPT-4V and compared these scores
with those from other existing evaluation methods. Our correlation calculations
showed that MRScore achieved a higher alignment with human judgment than
other metrics.

Our main contributions are summarized as follows:

(1) The paper critically evaluates traditional NLG metrics(e.g., BLEU [16],
CIDEr [19])for LLM-generated text, noting their inconsistency with human
evaluations.

(2) A novel, error-based framework is introduced, transforming radiologists’
evaluation criteria into a binary, weighted scoring system across seven stan-
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dards, significantly aligning model outputs with human assessments, evi-
denced by Kendall’s tau of 0.65.

(3) Leveraging this framework, we trained MRScore, an LLM-based model for
automated report scoring, which outperformed other metrics in human cor-
relation, achieving Kendall’s tau of 0.250 and Spearman’s coefficient of 0.304.

2 Problem Statement and Prior Metrics

In the domain of automated radiology report generation, the efficacy of generated
reports is assessed through a metric function f(x, x̂), where x represents the
generated report and x̂ is the reference report. Traditional evaluation metrics
such as BLEU [16], ROUGE [12], METEOR [1], and CIDEr [19] are commonly
employed for this purpose. However, these metrics predominantly rely on n-gram
overlap, which may not adequately capture semantic equivalence between the
generated and reference texts. Our study meets the need for a more sophisticated
metric that can evaluate the semantic content and clinical relevance of radiology
reports more accurately.

To systematically demonstrate the limitations of traditional metrics in evalu-
ating radiology report quality, we utilized GPT-4V to generate reports for the en-
tire MIMIC-CXR dataset, subsequently computing the NLG scores (e.g., BLEU,
ROUGE, METEOR, and CIDEr) for these reports. From this comprehensive
dataset, we meticulously selected 100 reports to undergo detailed human evalu-
ation. We then calculated the correlation between these human evaluations and
the traditional NLG scores, aiming to highlight the discrepancies and under-
line the inadequacy of traditional metrics in capturing the nuances of clinical
reporting.
Traditional NLG Metrics We evaluated GPT-4V-generated results using
traditional metrics, comparing them with state-of-the-art (SOTA) benchmarks.
Table 1 details this performance comparison on the MIMIC-CXR dataset [9],
focusing on radiology report generation methods. It shows that GPT-4V scores
are very low on all conventional metrics. To verify the efficiency of these scores,
we conducted the human evaluation in the following section.

Table 1. Comparison on the MIMIC-CXR dataset.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr
R2Gen [3] 0.353 0.218 0.145 0.103 0.277 0.142 -
R2GenCMN [2] 0.353 0.218 0.148 0.106 0.278 0.142 -
PPKED [13] 0.360 0.224 0.149 0.106 0.284 0.149 0.237
GSK [23] 0.363 0.228 0.156 0.115 0.284 - 0.203
MSAT [21] 0.373 0.235 0.162 0.120 0.282 0.143 0.299
METransformer [20] 0.386 0.250 0.169 0.124 0.291 0.152 0.362
GPT-4V [26] 0.338 0.190 0.109 0.061 0.240 0.125 0.033

Human Correlation Analysis We analyzed 100 report pairs, compris-
ing ground truth and GPT-4V-generated reports, graded by a radiologist into
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high(90), medium(60), and low(30) tiers. We compared these human ratings with
NLG metrics (e.g., BLEU, ROUGE, METEOR, CIDEr) and assessed their cor-
relation using Kendall’s τ coefficient and Spearman’s ρ coefficient, represented
as:

τ =
number of concordant pairs − number of discordant pairs

total number of pairs × (total number of pairs − 1)/2
,

ρ = 1− 6
∑

d2i
n(n2 − 1)

,

(1)

where di is the difference between the ranks of corresponding variables and n is
the number of observations.

Table 3 demonstrates near-zero correlation coefficients and high p-values
when compared to human evaluations, suggesting a minimal correlation with
human judgment. Given that effective metrics should highly correlate with hu-
man evaluations, these results imply their unsuitability. For illustrative purposes,
Fig 1 highlights an example where a report received a BLEU score of 0.069e-6,
indicative of a low NLG evaluation score, yet was highly rated by a professional
radiologist.

Fig. 1. An example of a ground truth report and a GPT-4V generated report. Key
medical information in the reports is highlighted using different colors.

Building on the preceding analysis, we introduce MRScore, an innovative
evaluation metric refined through a reward model within our novel evaluation
framework. The methodology is elaborated in subsequent sections.

3 Method

In this work, a well-trained radiologist helped develop a scoring system based on
seven key rules derived from expertise and academic research, ensuring its reli-
ability. Integrating this system with GPT-4 for report evaluation, we achieved
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outputs highly correlated with human judgments. This validated framework en-
abled us to create a dataset reflecting human evaluative preferences, crucial for
fine-tuning our reward model, which has proven to outperform conventional NLG
metrics in aligning with human assessment standards.

Fig. 2. Overview of MRScore: The upper part is the process of generating data, the
lower part is the process of training the reward model by using LoRA, the dashed line
is the testing phase, and the solid line is the training phase.

3.1 Report Evaluation Criteria Definition

We introduced a new error-based evaluation framework, validated through radi-
ologist assessments and literature, ensuring robust report evaluation. The method
assesses criteria sequentially, adjusting weights for detected errors, with specifics
outlined in Table 2. A comprehensive analysis of each error category and design
specifics follows.

3.2 Reward Model

This part will briefly introduce our training process.
Start with a pretrained Model Mistral-7B-instruct is utilized as LLM. This
model provides a solid foundation for language understanding and strong capa-
bilities in language comprehension.
Generate Training Data In this phase the pertained model is prompted
with prompts x to produce pairs of answers (y1, y2) ∼ πSFT (y|x). These are
then presented to human labelers who express preferences for one answer, de-
noted as yw > yl|x where yw and yl denotes the preferred and dispreferred
completion amongst (y1, y2) respectively. Here we used GPT-4V to replace the
human labeler, we generated reports with scores using our innovative error-based
evaluation framework, simulating how a human ranks these reports.
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Table 2. Table for error types and design detail.

Error Type and weight Design Detail
Impression consistency:30 Assess ’impression’ section’s presence for crucial diagnostic de-

tails, vital for quality care[6].
Impression Organ:20 Evaluate impression precision and detail on affected organs, as per

standards[4].
Description of Lesion:20 Ensure accurate lesion description, including location, size, and

related details, reflecting ground truth accuracy.
Clinical History:10 Confirm the report reflects accurate clinical history, integrating

patient history with imaging findings[17].
Completeness:10 Check report completeness, a critical aspect reflecting radiologists’

expertise.
Grammar:5 Guarantee report’s grammatical accuracy, ensuring clarity and

preventing misinterpretation[22,15].
Medical Terminology:5 Ensure proper use of medical terminology, key for clear healthcare

communication[14].

Define the Objective The model is trained to predict human preferences
accurately. This usually involves defining a reward function that the model aims
to maximize. For MRScore, the reward function is derived from the rankings of
radiology reports, with the model learning to predict the more preferred report
in each pair.
Fine-Tuning This fine-tuning adapts the model to the specifics of the reward
prediction, aligning its outputs with the expected human evaluations. In our
MRScore training, we fine-tuned the Mistral-7B-instruct model on our paired
dataset, teaching it to distinguish between higher and lower-quality reports based
on the derived scores. margin = scoreaccpet − scorereject. The reward head is a
linear projecting layer that will project the feature to 1 dimension, there will be
a Sigmoid function to get the final reward. There is a simple process graph in 3.
Evaluation Finally, assess the trained model’s performance to ensure it aligns
with human judgment or the desired outcomes. For MRScore, we evaluated
the model’s effectiveness by its alignment with expert radiologist evaluations,
ensuring the model’s predictions correlate strongly with human expert rankings.

3.3 Loss Function

The equation 2 is the loss function for our reward model. The γθ is the reward
return back by the reward model. yw represents higher value reports, and the
yl represents the lower value reports. The log is the logistic function. D is the
reference dataset. m represents the margin. K represents the batch size.

loss(θ) = − 1(
K
2

) ∑
(x,yw,yl)∼D

[log (σ (γθ(x, yw)− γθ(x, yl)−m))] (2)
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4 Experiments and Result

4.1 Dataset

Scoring Data Utilizing the new radiology report generation framework, we
employed the GPT4 API to create 3000 datasets with varied scores, stratified
into three tiers to maintain balanced data distribution: 0-40, 40-70, and 70-100,
ensuring uniform coverage across the scoring spectrum.

Paired Data We generated paired data with human rankings from the scoring
dataset, assigning higher-scored reports as accepted and lower-scored as rejected,
using the score difference as the margin. This method ensures the dataset reflects
human ratings, aiding the model in learning rewards and penalties. The dataset
comprises 2598 training and 200 testing entries.

Evaluate Human Correlation for the Scoring Data We analyzed 100
GPT-generated samples with radiologist evaluations to measure the human cor-
relation. The Pearson correlation of 0.65 indicates significant agreement between
radiologist and GPT scores, affirming the reliability of GPT’s scoring data for
reward model training. More details will be provided in the supplementary.

4.2 Experiment Result

In our study’s second phase, we assessed the human correlation for 100 sam-
ples against traditional metrics (e.g., Bleu, Rouge, Meteor, Cider) and observed
low correlations, suggesting their limited evaluation effectiveness. Subsequently,
we examined the correlation of our MRScore with more metrics like BertScore,
and RadgraphF1, known for their semantic evaluation efficacy. Our findings, de-
tailed in Table 3, indicate MRScore’s superior correlation with human judgments,
evidenced by Kendall’s Tau (0.250) and Spearman’s coefficient (0.304), outper-
forming traditional NLG metrics and showcasing the strongest alignment. While
traditional metrics showed insignificant correlations, Bert Score [24], Radgraph
F1 [7], and MRScore presented statistically significant correlations with lower
P-values. Our MRScore has the best preference with the highest correlation.

Table 3. Evaluation of P-Value, Kendall’s Tau and Spearman coefficient

Bleu-4 ROUGE_L METEOR CIDEr Bert Score [24] Radgraph F1 [7] MRScore
P Value ↓ 0.688 0.429 0.460 0.503 0.0446 0.071 0.002
Kendall’s Tau ↑ 0.032 0.063 0.059 0.053 0.159 0.144 0.250
P Value ↓ 0.677 0.484 0.463 0.422 0.045 0.08 0.002
Spearman ↑ 0.042 0.071 0.074 0.081 0.200 0.176 0.304

The scatter plots in Fig. 3 present comparisons between various scoring met-
rics and human evaluation rates for radiology reports. Each plot shows a different
metric, with points indicating individual report scores against human ratings.
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The trends are represented by lines with shaded areas demonstrating confidence
intervals. MRScore appears to have the most positive correlation with human rat-
ings, suggesting that it closely aligns with professional evaluations in the medical
report. Traditional NLG metrics like Bleu-4, METEOR, and ROUGE_L show
some positive correlation with human ratings but with a greater spread, indicat-
ing variability in their alignment. The Bertscore also seems to positively correlate
with human ratings, though to a lesser degree than MRScore. Radgraph F1 shows
a positive trend but not as strong as MRScore. Overall, MRScore stands out as
a promising metric for aligning with human judgment, potentially indicating its
effectiveness.

Table 4 presents the results of different LLMs as base models trained on our
preference dataset and reward models, along with their correlation with human
scores. Two correlation scores are used: Kendall and Spearman correlation coeffi-
cients. The Mistral-7b performs the best in terms of consistency with the human
ratings model and has 6.8M trainable parameters, with a Kendall correlation of
0.179 and a Spearman correlation of 0.220. So, we selected Mistral as our based
LLM.

Table 4. Human Evaluation Result of Different LLM base models

Model Trainable params (%) Kendall ↑(P value ↓) Spearman ↑(P value ↓)
Phi-1.5 [11] 5.2M (0.197) 0.153 (0.056) 0.192 (0.055)
Gemma-2b-it [5] 1.8M (0.073) 0.135 (0.091) 0.169 (0.092)
Gemma-7b-it [5] 6.4M (0.075) 0.170 (0.034) 0.209 (0.037)
Mistral-7b [8] 6.8M (0.096) 0.250 (0.002) 0.304 (0.002)

Fig. 3. Correlation between metrics score and radiologist score
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5 Conclusion

In conclusion, MRScore stands as an innovative metric that significantly en-
hances the evaluation of radiology reports generated by LLMs, aligning closely
with human expert evaluations. Its design, rooted in an error-based evaluation
framework co-developed with radiologists, ensures a strong correlation with hu-
man judgment. Demonstrating higher correlation coefficients (Kendall’s tau of
0.250 and Spearman’s 0.304) than traditional metrics.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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