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Abstract. Dynamic coronary roadmapping is a technology that over-
lays the vessel maps (the "roadmap") extracted from an offline image
sequence of X-ray angiography onto a live stream of X-ray fluoroscopy in
real-time. It aims to offer navigational guidance for interventional surg-
eries without the need for repeated contrast agent injections, thereby
reducing the risks associated with radiation exposure and kidney failure.
The precision of the roadmaps is contingent upon the accurate alignment
of angiographic and fluoroscopic images based on their cardiac phases,
as well as precise catheter tip tracking. The former ensures the selec-
tion of a roadmap that closely matches the vessel shape in the current
frame, while the latter uses catheter tips as reference points to adjust
for translational motion between the roadmap and the present vessel
tree. Training deep learning models for both tasks is challenging and
underexplored. However, incorporating catheter features into the models
could offer substantial benefits, given humans heavily rely on catheters
to complete the tasks. To this end, we introduce a simple but effec-
tive method, auxiliary input in training (AIT), and demonstrate that it
enhances model performance across both tasks, outperforming baseline
methods in knowledge incorporation and transfer learning.
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1 Introduction

X-ray angiographic image sequences are frequently used in interventional cardi-
ology to assist with the navigation of devices in coronary arteries during pro-
cedures such as angioplasty or stent placement. However, it exposes patients to
certain risks, including radiation exposure and potential kidney failure due to
the use of contrast agents [16]. Dynamic coronary roadmapping (Fig. 1) is a
technology aimed at minimizing the doses of radiation and contrast agent re-
quired. It works by superimposing a live contrast-free X-ray fluoroscopic image
of the patient with a detailed coronary artery map (the "roadmap"), which is



2 Y. Liu et al.

obtained in advance through X-ray angiography. The roadmap is updated real-
time accounting for the movement of the heart and the patient’s breathing. This
approach effectively reduces the necessity for repeated angiography [16].
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Fig. 1. The Workflow of Dynamic Coronary Roadmapping.

Dynamic coronary roadmapping can be implemented with three modules
(Fig. 1): vessel segmentation, cardiac phase matching, and catheter tip detec-
tion and tracking. The vessel segmentation module extracts vessel masks from
angiographic videos. As coronary vessels deform in cycles due to heartbeats, the
cardiac phase matching module ensures the similarity of vessel shapes in the
roadmap and live image by selecting the angiographic video frame that best
matches the cardiac phase of the live fluoroscopic image. The catheter tip detec-
tion and tracking module locates the tip of the guiding catheter, which remains
stationary in the vessel and serves as a reference for heart and breathing motion,
in both the angiographic and fluoroscopic videos. Integrating these components,
the system overlays the vessel mask from the selected angiographic frame onto
the live image after compensating for translational motion. This overlay serves
as the dynamic navigational roadmap.

This paper focuses on developing deep learning models for the cardiac phase
matching and catheter tip tracking functions. Humans naturally leverage infor-
mation from the catheter body to assist with both cardiac phase matching and
catheter tip tracking, due to their challenging natures. In cardiac phase matching,
the invisibility of vessels in fluoroscopy images makes it difficult to identify the
cardiac phase. However, in both angiographic and fluoroscopic image sequences,
catheter moves and deforms periodically with heartbeat. A person can compare
catheter position and shape across two videos and match their cardiac phases. In
catheter tip tracking, the challenges arise from the tip is frequently obscured by
contrast agents or other devices. In this case, an individual can approximate their
location by examining the shapes of the catheter in adjacent frames where the
tips are visible. However, leveraging catheter information proves challenging for
deep learning models. As we will demonstrate in this paper, models struggle to
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converge or learn shortcut rules [11, 8] that fail to generalize in more challenging
scenarios (e.g. the presence of thick contrast agents).

Training deep learning models to leverage catheter body features can be seen
as an application of domain knowledge incorporation [21, 5] or transfer learning
[24]. Typical approaches for medical images under this umbrella include fine-
tuning a pretrained network [17, 19], multi-task learning [23, 1], custom neu-
ral network architecture [9, 20], teacher-student models [10, 12], generative style
transfer [23], and constraining image features with attention maps [13, 4].

In the context of catheter tip tracking with deep learning, prior research has
enhanced model capabilities with a dedicated branch for predicting the catheter
mask [6, 14] and custom architectures with emphasis on catheter motion [6]. In
contrast, incorporating catheter knowledge into cardiac phase matching models
is less explored. Prior research has either used ECG signals to match cardiac
phases [14] or analyzed the catheter curvature to assess the similarity between
two frames’ cardiac phases [16]. These methods face limitations, as ECG signals
may not always be accessible in clinical settings, and manually engineered fea-
tures tend to be less reliable than machine learning approaches, especially when
the catheter’s shape is complicated by foreshortening or overlaps with other ob-
jects. Ciusdel et al. [3] developed a deep learning model to identify cardiac phase,
but its application is limited to angiographic images with visible vessels.

In this paper, we introduce Auxiliary Input in Training (AIT), a simple yet
effective method that leverages catheter masks as auxiliary signals to incorpo-
rate catheter features into deep learning models for cardiac phase matching and
catheter tip tracking, thereby enhancing representation quality and accelerating
convergence. By appending the catheter mask as an additional input channel
and gradually ablate it to a zero matrix during training, AIT facilitates the inte-
gration of catheter information. This approach has enabled us to create, to our
knowledge, the first end-to-end deep learning framework capable of accurately
matching coronary X-ray frames by cardiac phases. Moreover, we demonstrate
that AIT also improves catheter tip tracking models, outperforming baseline
methods in knowledge incorporation or transfer learning despite its simplicity.

2 Methodology

In this section, we first introduce the concept of AIT, then formally define the
problems of cardiac phase matching and catheter tip tracking, and present our
models and loss functions. More details are in the supplementary material.

AIT Suppose we want to train a deep learning model f : x 7→ y on a dataset
D = {x, y}, but the model is hard to train due to the unsmoothness of the loss
landscape or a complicated relationship between x and y. As a consequence,
directly training f on D may take very long to converge or converge to minima
that fail to generalize to the test dataset (e.g. shortcut learning [11, 8]). The key
idea of AIT is to introduce an auxiliary input z to guide the training process so
that the training converges faster and better representations are learned. More
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specifically, we initially train f(x; z) on a dataset Dz = {x, y, z}, and gradually
ablate z throughout the training process so that the model’s reliance from the
auxiliary information z is transferred back to the primary input x, which is
the only variable needed for inference. The auxiliary input z, which though can
be inferred from x, has a more obvious relationship to y (with respect to the
network’s architecture or inductive bias) or is an indispensable step to infer y
with x based on prior knowledge (e.g. humans rely on catheter shape consistency
to identify cardiac phases and track tips).

In the applications of cardiac phase matching and catheter tip tracking, z
is a binary catheter mask, which is concatenated with the input image x along
the channel dimension. The ablation of z is done by adding Gaussian noise and
concurrently decreasing the signal magnitude:

z̃ = (1− α)((1− α)z + αN (0, 1))

, where z̃ is the ablated z and α is a parameter that adjusts the intensity of the
ablation. Throughout the training process, α is progressively increased from 0
to 1. At the point where α = 1, z is entirely ablated into a matrix of zeros, thus
becoming unnecessary for inference. In our default setting, we increment α by
0.1 at each step. After achieving network convergence at a given ablation level
without any signs of overfitting, we escalate to the subsequent ablation level.

Cardiac Phase Matching Given a sequence of recorded cardiac angiographic
images {IAi } and a live fluoroscopic image stream {IFi }, the cardiac phase match-
ing function finds the image in {IAi } that best matches the cardiac phase of the
current image IFi in real-time. We achieve this by using a CNN encoder to ex-
tract features from each image and a temporal neural network to infer temporal
relations between image features, for which we experimented with both ConvL-
STM and Transformer backbones to show the effectiveness of AIT on different
architectures. The model outputs a feature vector vi for each image and the
cosine similarity between two feature vectors measures how close the cardiac
phases of the corresponding images are.

The CNN-ConvLSTM model (hereafter denoted as CNN-C) comprises a se-
ries of alternating UNetResBlock [2] and ConvLSTM [18] layers, followed by a
global max pooling and a fully connected layer to transform a 4D image tensor
into a 1D feature vector. {IAi } and {IFi } are concatenated along the temporal
dimension and sequentially fed into the model (Fig. S1).

The CNN-Transformer model (hereafter denoted as CNN-T) comprises a
ResNet encoder and stacked attention layers. The outputs from the ResNet are
flattened into 1D vectors before being passed to the attention layers. The at-
tention layers run with self-attention for {IAi }. For real-time inference of {IFi },
the features extracted from the current fluoroscopic image are used as the query
vector, while features from previous frames are used as key and value vectors.

Both models were trained with a triplet loss

L = max(−S(vF , vAp ) + S(vF , vAn ) + ϵ, 0)
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S denotes the cosine similarity. vF is the feature vector of a fluoroscopic image
IFi . vAp is the feature vector of an angiographic image image IAi with the same
cardiac phase, whereas vAn is the feature vector of one with a different cardiac
phase. ϵ represents a positive margin, which we set to 0.8 in all experiments.

Catheter Tip Tracking Catheter tip tracking involves determining the coordi-
nates (x, y) of a catheter tip within an image, based on one or multiple previous
images and their corresponding tip coordinates. Similar to cardiac phase match-
ing, we used both CNN-C and CNN-T models to show the effectiveness of AIT
on different architectures.

The CNN-C model is a UNet with ConvLSTM layers in the skip connec-
tions. The input is a sequence of 3-channel tensors, with each channel contain-
ing the reference image (the image where tip location is known), the reference
tip heatmap, and the current image to inference. The tensors are sequentially
inputted into the network, which then outputs a tip heatmap for each frame.

The CNN-T model is similar to STARK-S[22]. It takes a template obtained
by cropping the reference image around the tip and a search image, and passes
them through a ResNet encoder. The encoder’s outputs are flattened, concate-
nated, and then forwarded to a transformer encoder. Subsequently, a trainable
target query and the transformer encoder’s output are sent to a transformer
decoder. The resulting output is further processed by a CNN head for heatmap
regression. Similar to [6], three templates are used to adapt to variations in the
tip’s appearance, which includes the initial template and two from the latest
tracked tips, selected if their probabilities in the heatmaps exceeding a certain
threshold (0.5). In AIT, catheter masks are concatenated with both the tem-
plates and search images.

Both models were trained with the L1 loss between the predicted heatmaps
and the labels.

3 Experiments

Baseline Methods In addition to vanilla supervised learning, we also compared
AIT with three other methods on both the cardiac phase matching and the
catheter tip tracking tasks (hereafter denoted as CPM and CTT, respectively).

The first method (denoted as FT) fine-tunes a model trained for catheter
segmentation. In the CPM task, the segmentation network builds upon the orig-
inal CNN-C or CNN-T architecture (Section 2) and appends a CNN decoder
after the last ConvLSTM/Attention layer for mask regression. In the CTT task,
the segmentation models share the same structure as the tracking models.

The second method employs a multi-task learning (MTL) approach, wherein
the models feature two branches simultaneously trained to predict both catheter
masks and task-specific outputs. In the CPM task, the catheter segmentation
branch uses the same CNN decoder structure in the FT method. In the CTT
task, the catheter segmentation branch parallels the UNet decoder (in the CNN-
C) or the heatmap regression head (in the CNN-T), having the same structures.
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The third method uses a teacher-student (T-S) model, where the teacher net-
work, pre-trained for catheter segmentation, guides the student (target) model
with the maximum mean discrepancy (MMD) loss on the student’s and teacher’s
features. The teacher models share the same architectures with the segmentation
networks in FT. For fair comparison with MTL, the MMD loss is applied to the
features before the segmentation branch, where networks start to use separate
features for segmentation and target tasks.

In all experiments, we set the learning rates to 10−5 and used the Adam
optimizer, with betas configured to 0.9 and 0.999.

Ablation Studies We investigated how AIT was affected by the percentage
of data that trained with auxiliary inputs. This question is important since
acquiring extra labels can be expensive. We run AIT on both tasks with partial
inclusions (20%, 40%, 60%, and 80%) of catheter masks, where zero matrices
were used as placeholders for the missing catheter masks.

Datasets and Evaluation Metrics All experiments were conducted using
in-house data, obtained with institutional committee approval. The datasets
for CPM and CTT contain 2483 pairs of angiographic and fluoroscopic videos
(174228 frames in total) and 4098 videos (255432 frames) respectively, with
frame rates equal to 7.5, 15, or 30 fps and image sizes range from 492 × 492 to
624 × 624 after normalizing pixel spacing to isotropic 0.2 mm. Cardiac phases,
catheter tips, and catheter masks were manually labeled. The datasets were
divided into training, validation, and testing sets with a 7:2:1 ratio.

The performance of models on the CPM task is assessed with matching ac-
curacy, defined as the temporal distance between the predicted frame and the
nearest ground-truth frame (multiple frames may exhibit the same cardiac phase
due to the periodic nature of heartbeats). For the distance metric, we employed
two units of measurement: frame counts and the percentage of a cardiac cy-
cle. For example, if the distance is 2 frames within a cardiac cycle spanning 12
frames, the corresponding percentage is calculated as 1/6 or 16.7%. To evaluate
the performance on the CTT task, we deemed a tracking attempt successful if the
distance between prediction and ground-truth did not exceed 2 mm. This thresh-
old is consistent with the outside diameter of a guiding catheter [15] and meets
the conventional requirements of roadmap accuracy [7, 16]. Using this criterion,
we calculated the precision (P) and recall (R) for tracking. We also calculated
the distance mean and standard deviation for true positives (TPs) and all cases.

4 Results and Discussion

Both CNN-C and CNN-T backbones have inference times (on an Nvidia V100
GPU) under 25 ms and 40 ms for the CPM and CTT tasks, respectively, satis-
fying the requirements for clinical application (15 fps).
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Table 1. Performance on the Cardiac Phase Matching Task. α is the ablation strength
on auxiliary inputs. Bold font indicates the best method (paired t-tests, p < 0.05)
excluding intermediate AIT results (α ̸= 1).

Methods CNN-ConvLSTM CNN-Transformer
dist(frame)↓ dist(%)↓ dist(frame)↓ dist(%)↓

Vanilla 3.26±1.87 25.00±14.42 3.25±1.88 25.00±14.45
FT 3.19±1.85 24.01±13.81 3.21±1.84 24.49±14.13
MTL 3.25±1.87 24.99±14.43 3.30±1.91 24.46±14.10
T-S 2.35±1.35 17.42±10.08 2.44±1.41 19.05±10.98
AIT (α = 0) 0.92±0.54 7.26±4.22 0.87±0.51 6.85±4.00
AIT (α = 0.5) 0.96±0.57 7.69±4.45 0.97±0.59 7.75±4.59
AIT (α = 0.8) 0.96±0.56 7.34±4.34 0.95±0.54 7.32±4.31
AIT (final) 0.89±0.51 7.01±4.08 0.85±0.51 6.72±3.98

The performance of all the methods on the CPM task, along with AIT per-
formance at different ablation strengths, is shown in Table 1. We trained CNN-
C and CNN-T models using AIT and other methods for 300 and 800 epochs,
respectively. It was observed that both networks failed to converge under the
vanilla, FT, and MTL strategies, as evidenced by a distance metric around 25%,
indicating that the networks were essentially making random guesses. The T-
S method produced predictions above random chance, yet its performance was
significantly inferior to that of AIT (paired t-test, p < 0.05) and did not meet
clinical standards. To better understand the underlying causes, we visualized
the features after the second ConvLSTM block in the CNN-C backbone (Fig.
2), which was done by concatenating the magnitude of the first three principal
components as RGB channels. It can be observed that AIT(α = 1) was able to
learn strong features related to cardiac phase, located at catheter, wire, heart
contour (circled in Fig. 2), whereas other methods learned much weaker features.
These observations indicate that AIT is able to facilitate model convergence by
incorporating catheter features.

AIT (α=0, 0.5, 0.8, 1)

Vanilla FT (before) FT (after) MTL T-S

Fig. 2. Visualization of Features Learned by Different Methods in the CPM task. First
row (left to right): original image and AIT (α=0, 0.5, 0.8, 1). Second row (left to right):
vanilla supervised learning, FT (before and after fine-tuning), MTL, and T-S.
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Additionally, it is observed that AIT’s performance dip initially with the start
of auxiliary input ablation but improved near the end of the ablation schedule.
Together with the feature maps in Fig. 2, it suggests that the model initially
relied on catheter features, which became weaker due to mask ablation. Subse-
quently, the model adapted by leveraging alternative features to offset the weak-
ened catheter features, resulting in more robust predictions than those based
solely on catheter information.

AIT achieved sub-frame average accuracy with both networks, indicating its
potential to replace ECG-based phase matching methods. However, to assess its
practical clinical use compared to the ECG-based method, the accuracy needs
further evaluation by measuring the distance between the overlaid vessels and
the interventional devices (e.g. guide wires) within the vessels, as demonstrated
in [14]. This practical assessment will be included in other future work.

Table 2. Performance on the Catheter Tip Tracking Task. α is the ablation strength
on auxiliary inputs. Bold font indicates the best method (paired t-tests, p < 0.05)
excluding intermediate AIT results (α ̸= 1).

Methods CNN-ConvLSTM CNN-Transformer
P(%)↑ R(%)↑ dist(TP)↓ dist(all)↓ P(%)↑ R(%)↑ dist(TP)↓ dist(all)↓

Vanilla 91.3 94.5 0.90±0.63 1.67±2.88 92.5 95.2 0.92±0.62 1.45±2.24
FT 92.6 95.9 0.89±0.66 1.41±2.16 93.0 96.1 0.91±0.57 1.33±1.81
MTL 90.5 94.0 0.91±0.79 1.75±2.98 91.6 94.1 0.93±0.65 1.56±2.41
T-S 94.7 97.4 0.89±0.52 1.26±1.87 95.5 98.0 0.91±0.57 1.13±1.36
AIT (α = 0) 99.7 99.8 0.87±0.49 0.89±0.62 99.7 99.8 0.90±0.51 0.91±0.61
AIT (α = 0.5) 98.2 99.0 0.88±0.53 0.96±0.88 97.8 98.7 0.91±0.54 1.04±1.08
AIT (α = 0.8) 97.7 98.6 0.88±0.51 1.00±1.04 97.2 98.5 0.91±0.53 1.08±1.22
AIT (final) 96.9 97.6 0.88±0.50 1.10±1.48 97.1 97.8 0.90±0.54 1.08±1.23

In the CTT task, AIT achieved the highest performance using the CNN-C
backbone and ranked as either the best or second-best using the CNN-T back-
bone (Table 2). Generally, MTL negatively impacted performance (consistent
with [6]), while other approaches contributed positively. AIT performance de-
creased with the progression of auxiliary input ablation, due to ease of inferring
catheter tip positions from clean catheter masks. However, it still significantly
outperformed the vanilla supervised learning method (paired t-tests, p < 0.05),
indicating that catheter features were effectively incorporated into the models
even in the absence of catheter masks as inputs, thereby improving performance.
Furthermore, it should be noted that vanilla CNN-T resembles ConTrack with-
out multitask, flow, or multi-templates (refer to Table 2 in [6]). AIT improved
the average tracking distance by 25.5% to 1.08 mm, compared to ConTrack’s
improvement by 24.9% to 1.63 mm (Table 2 in [6]). Although these models were
trained and tested on different datasets, the results suggest that AIT’s approach
of integrating catheter body information might achieve performance levels sim-
ilar to those of specifically designed neural networks.

Finally, we demonstrate in the ablation study that even a small percentage
of auxiliary inputs can yield significant benefits, especially in the CPM task, as
shown in Fig. 3.
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Fig. 3. Ablation Study

5 Conclusion

This study introduces a straightforward yet effective approach, Auxiliary In-
put in Training (AIT), for incorporating prior knowledge into deep learning
models. We applied this method to train models for cardiac phase matching
and catheter tip tracking—two demanding tasks in dynamic coronary roadmap-
ping—and showcased its efficacy in enhancing performance across both tasks.
Despite its simplicity, AIT’s superior performance stands out in comparison to
other techniques, underscoring its value in complex medical imaging tasks.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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