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Abstract. The rising interest in pooling neuroimaging data from var-
ious sources presents challenges regarding scanner variability, known as
scanner effects. While numerous harmonization methods aim to tackle
these effects, they face issues with model robustness, brain structural
modifications, and over-correction. To combat these issues, we propose
a novel harmonization approach centered on simulating scanner effects
through augmentation methods. This strategy enhances model robust-
ness by providing extensive simulated matched data, comprising sets
of images with similar brain but varying scanner effects. Our proposed
method, ESPA, is an unsupervised harmonization framework via En-
hanced Structure Preserving Augmentation. Additionally, we introduce
two domain-adaptation augmentation: tissue-type contrast augmenta-
tion and GAN-based residual augmentation, both focusing on appearance-
based changes to address structural modifications. While the former
adapts images to the tissue-type contrast distribution of a target scan-
ner, the latter generates residuals added to the original image for more
complex scanner adaptation. These augmentations assist ESPA in miti-
gating over-correction through data stratification or population match-
ing strategies during augmentation configuration. Notably, we leverage
our unique in-house matched dataset as a benchmark to compare ESPA
against supervised and unsupervised state-of-the-art (SOTA) harmoniza-
tion methods. Our study marks the first attempt, to the best of our
knowledge, to address harmonization by simulating scanner effects. Our
results demonstrate the successful simulation of scanner effects, with
ESPA outperforming SOTA methods using this harmonization approach.
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1 Introduction

Interest is rising in pooling neuroimaging data from multiple sites to make larger
datasets. Although this boosts statistical power, it meets challenges like scan-
ner effects [1]. These effects, from variations within or among sites, can bias
neuroimaging measures and affect how clinical signals are understood [2]. To
tackle this, different harmonization methods have been suggested. Harmoniza-
tion methods tackle scanner effects from various perspectives. One view focuses
on harmonization of images [3–17] or image-derived measures [1, 18–24]. The
latter adjusts measure distributions across scanners better but lacks harmo-
nization accuracy information compared to the former [25]. Another perspec-
tive views harmonization as either a standalone preprocessing step or an in-
tegrated part of methods targeting specific tasks. These are known as task-
agnostic [1, 3–15, 18–24] and task-specific [16, 17, 23, 24] harmonizations, respec-
tively. While task-specific methods benefit from task-related information, they
may lack generalizability. Despite these views, two main harmonization ap-
proaches prevail: (1) removing scanner effects from data, and (2) adapting data to
a scanner domain. In the former, scanner effects are treated as estimable variabil-
ity to be eliminated [5,18–20]. In the latter, scanner effects are viewed as causing
domain shift, with harmonization achieved by adapting data to either a scanner-
middle-ground domain [3, 4], the domain specific to a target scanner [6–11], or
the scanner-variant component of data for a target individual [12–14].

In practice, harmonization methods encounter two main challenges: (1) over-
correction, where biological variables may be inadvertently removed alongside
scanner effects [13], and (2) brain structural modifications, resulting in alter-
ations to the brain’s structure [3]. To mitigate these issues, certain methods
confine harmonization to image contrast or style. For instance, CALAMITI [14]
aims to harmonize images by adapting them to the contrast of images from a
target scanner. However, this risks over-correction when significant biological
differences exist across scanner domains. Style-transfer harmonization [13] ad-
justs images to match the style of an individual target image, thus addressing
population-wide over-correction concerns. Still, this presents a potential risk of
conveying biological information, such as white matter hyperintensity, through
image style [26]. Using matched data is a key strategy to tackle these chal-
lenges, as matched images portray a biologically similar brain with differences
solely attributed to scanner effects [3]. These voxel-wise differences are used
as supervision for the task of harmonization. Harmonization methods utilizing
matched data, classified as supervised methods, offer lower susceptibility to over-
correction and brain modifications, as they directly address scanner effect [4].
However, their applicability is limited to datasets with available matched data,
potentially affecting their robustness due to the small size of matched data [3].

A more straightforward harmonization perspective involves simulating scan-
ner effects through augmentation methods, a direction explored in this study.
These scanner-specific augmentation methods can be applied within self-supervised
augmentation-based frameworks [27] to generate scanner-free pretext or used to
simulate matched data for pretraining harmonization methods. Such applications
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Fig. 1: Illustration of ESPA

contribute to addressing potential robustness issues in supervised harmonization
models. Our main contributions are summarized as follows:

1. Proposal of ESPA, an unsupervised harmonization framework via Enhanced
Structure Preserving Augmentation.

2. Introducing two novel augmentation methods to simulate scanner effects,
effectively addressing brain structural changes and over-correction issues.

3. Utilization of our unique in-house matched dataset as a benchmark to com-
pare ESPA against both supervised and unsupervised SOTA harmonization
methods. Our code is available at https://github.com/Mahbaneh/ESPA.git.

2 Method

ESPA (Fig. 1), crafted as an unsupervised task-agnostic image-harmonization
framework, adapts images to a scanner-middle-ground domain. Using the su-
pervised harmonization method MISPEL [3] as our harmonization framework,
we made a key modification: opting for simultaneously generating and using
simulated matched images in training rather than using matched data. These
simulated matched images are generated using our augmentation methods.
Notations and Assumptions.We refer to the data targeted for harmonization
as multi-scanner data. This data contains images of M scanners. We consider
another set of data with images of one arbitrary scanner and refer to it as source
data. Throughout the manuscript, we refer to scanners of the source and multi-
scanner data as the source scanner and target scanners, respectively. Source
data, Xn=1:N , consists of N images with a total of Xk=1:K

n=1:N slices where K is
the number of axial slices of an image. Our goal is to design augmentation
methods to adapt images of the source data to those of the M scanners in the
multi-scanner data. These methods can then be applied to the slices in source
data, Xk=1:K

n=1:N , to generate our desired simulated matched data. We refer to this
simulated set as X̃k=1:K

n=1:N,m=1:M in which X̃k
n,m=1:M are matched slices for Xk

n.
ESPA uses the augmented methods to sample variations of such data during
its training to learn generating their harmonized images X̄k=1:K

n=1:N,m=1:M , where

X̄k
n,1 ≈ · · · ≈ X̄k

n,m ≈ · · · ≈ X̄k
n,M (for all n samples and k axial slices).
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2.1 MISPEL

MISPEL (Fig. 1) specializes in harmonizing images of scanners with matched
data. It uses encoder-decoder units for each scanner, translating input slices
into latent embeddings using a U-Net [30] encoder. Linear decoding combines
these embeddings to reconstruct the input image, ensuring similarity between
embeddings and reconstructed images across scanners for harmonization. Also,
MISPEL maintains brain structure by ensuring similarity between reconstructed
and original images. These were respectively referred to as Embedding Coupling,
Harmonization, and Reconstruction in MISPEL [3] and our Fig. 1.

2.2 Tissue-type contrast augmentation

Scanner effects can alter brain tissue contrast [21]. Therefore, we employ a three-
step augmentation method to adapt tissue contrast from a source scanner to
one target scanner while preserving brain structure. This involves modifying an
augmentation method initially designed for brain segmentation [28].

Step 1: Estimating the distributions of tissue types. In this step, we
apply the Gaussian Mixture Model [29] to the intensity values of the brain voxels
in source image Xn. The intensity set {v1, . . . , vP }, where P is the total number
of brain voxels in the image, is modeled as p(vp) = ΣT=3

t=1 πtN (vp|µt, σ
2
t ), with t

denoting brain tissue types, N (µt, σ
2
t ) representing a Gaussian distribution with

mean µt and variance σ2
t , and πt as the mixing coefficient. Using Bayes’ rule, we

compute the probability of each class label C as p(C = t|v) = πtN (v|µt,σ
2
t )

Σ3
t′=1

πt′N (v|µt′ ,σ
2
t′ )

.

Step 2: Modifying tissue type distributions.We adapt this method step
to align images from our source data with those of a single target scanner in our
multi-scanner data. To achieve this, we adjust the tissue type distributions of
images in the source data by sampling from estimated normal distributions cap-
turing directional differences in tissue-type parameters between the source data
images and those of the target scanner. The desired modified tissue type distri-
bution of the source image Xn is determined as N (µ

′

t, σ
′2
t ) = (µt−qµt , σ

2
t −qσ2

t
),

where qµt
and qσ2

t
are adaptation terms sampled from the determined distribu-

tions of differences. To calculate these terms, we first compute directional differ-
ences of distribution parameters from all source images to all target images. One
instance of such differences is denoted as Df

µt
= µn,t−µl,t and Df

σ2
t
= σ2

n,t−σ2
l,t,

where (µn,t, σ
2
n,t) and (µl,t, σ

2
l,t) are distribution parameter pairs for images n and

l in the source data and target scanner, respectively, and f denotes the f th dif-
ference in a total of F calculated differences. Finally, we compute the adaptation
terms as qµt

= Mean(Df=1:F
µt

)+rµ and qσ2
t
= Mean(Df=1:F

σ2
t

)+rσ, where rµ and

rσ are sampled from the uniform distributions U(−Std(Df=1:F
µt

), Std(Df=1:F
µt

))

and U(−Std(Df=1:F
σ2
t

), Std(Df=1:F
σ2
t

)), and Mean(·) and Std(·) denote the mean

and standard deviation functions.
Step 3: Reconstructing augmented image. For reconstructing the aug-

mented image for source image Xn, we adapt each voxel value vp for each tissue
type as v′p,t = µ′

t+dptσ
′
t, where dpt = (vp−µt)/σt maintains the original relative
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Fig. 2: Illustration of Residual StarGAN

distance of voxel intensity from the mean intensity of tissue type t in the im-
ages, preserving structural brain information. We then compute the augmented
intensity voxel v′p as v′p = ΣT=3

t=1 p(C = t|vp)v′p,t. After calculating all v′p for
p ∈ {1, . . . , P}, we obtain the adapted image of Xn aligned with the tissue-type
distribution of our single target scanner.

2.3 GAN-based residual augmentation

Scanner effects can be more intricate than tissue-type modifications. Thus, we
develop a GAN-based augmentation method to generate and sample scanner
effects as images (residuals) added to the original images. By applying scanner
effects as additive components to images, we consider brain structure during aug-
mentation. For this purpose, we introduce Residual StarGAN, which performs
image-to-image translation between all pairs of our scanner domains (source
and target scanners) using a single generator and discriminator pair (Fig. 2(a)).
Residual StarGAN is a modification of StarGAN [31], where we replace the gen-
erator with a Residual Generator, and include noise as input to this generator for
sampling. The Residual Generator comprises the StarGAN Generator followed
by the Additive Module (Fig. 2(b)). The StarGAN Generator generates the resid-
uals to be added to the image in the Additive Module for domain adaptation.
The process of adapting an image from the source scanner to the domain of a
target scanner in Residual StarGAN is depicted in Fig. 2(b). These steps mirror
those outlined in StarGAN, with details provided in its original paper [31]. We
utilize the trained Residual Generator as our residual augmentation method.

3 Experiments and Results

Scanners and Datasets. We utilized an in-house matched dataset of 3T T1
images across four scanners: General Electrics (GE), Philips, Siemens Prisma
(SiemP), and Siemens Trio (SiemT). We reported more details on specification
of scanners in this data in Supp. Table 1. This data was collected from 18 sub-
jects with a median age of 72 years (range 51-78), 44% of whom were male, all



6 M. Torbati et al.

Fig. 3: Visual assessment of scanner effects and harmonization across matched images.

cognitively unimpaired, with 10 individuals exhibiting a high degree of small
vessel disease (SVD). We selected this data as our multi-scanner data and did
not use its supervision (matched aspect) for multi-scanner data during ESPA
training. We only used its matched aspect for evaluating harmonization. We
chose source data of 192 T1 images from a 3T Siemens Trio scanner in the
OAISIS-3 dataset [32]. We aligned the demographics of source data to that of
multi-scanner data to address over-correction during configuring augmentations.
We applied preprocessing to both datasets, including non-linear registration to
a T1 atlas [33], N4 bias correction [34], skull-stripping through brain masking,
and image scaling by dividing images by their mean intensity. We refer to the
preprocessed matched data as RAW.

Baselines and Training Setup. For SOTA, we employed style-transfer harmo-
nization (referred to as Style-Trans) [13] as unsupervised, and CALAMITI [14]
and MISPEL [3] as supervised methods. We slightly modified CALAMITI for
training it as a supervised harmonization method. For Style-Trans, we directly
applied their released pre-trained model to RAW. For CALAMITI and MISPEL,
we conducted 6-fold cross-validation for RAW, splitting subjects into 12/3/3 for
train/validation/test sets. ESPA follows a 3-step process, using the same subject-
level cross-validation splits for the preprocessed multi-scanner data. It uses two
sets from source data: 12/20/20 and 100/20/20 splits of train/validation/test
sets for its first two steps, respectively. (1) In the initial step, two augmentation
methods are configured individually to adapt images of 12 training source images
to 12 training images within each of the 4 scanners in the multi-scanner data.
(2) The second step involves training ESPA by creating variations of simulated
matched data, individually applying augmentations to the 100 source training
images considered for this step. Separate sets of ESPA models, referred to as
ESPATC and ESPARes, are trained for each augmentation. (3) In the final step,
these models are individually applied to images of 3 test subjects in the multi-
scanner data. These three steps were repeated for each cross-validated folds.
Harmonized test sets are then combined across folds as one set of harmonized
multi-scanner data for evaluation. Model training and hyper-parameter tuning
were conducted on NVIDIA RTX5000 within suggested ranges from the original
papers: [3] for CALAMITI and MISPEL, and [3, 28,31] for ESPA.
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3.1 Results

Validation on domain adaptation in augmentation. To evaluate this, we
tested scanner classification performance on augmented images. For each fold
of the multi-scanner data, we trained, optimized, and evaluated a multi-class
scanner classifier using the train/validation/test images from both the multi-
scanner data as well as the source data designated to the first step of ESPA. To
ensure balanced classification, we used images of solely 3 subjects from each of
the source validation and test sets. For the classifier, we used the discriminator
network in [8]. The classifiers’ cross-fold accuracy averaged 78.6 ± 1.9%, with
accuracies of [85.2±5.7, 81.±2.5, 73.9±4.1, 74.4±4.2]% for the target scanner set:
[GE, Philips, SiemP, SiemT], respectively. For the augmented images, we applied
the configured augmentations of each fold individually to our 20 source test
images considered for the first step in ESPA. The classifiers were then applied to
the augmented images, resulting in an average cross-fold accuracy of 88.2±3.9%
for tissue-type contrast augmentation, with accuracies of [86.1± 6.9, 86.5± 7.2,
91.3±2.8, 89.0±3.4]% for target scanners. Similarly, for residual augmentation,
the accuracy averaged 88.1 ± 3.9%, with accuracies of [86.4 ± 5.7, 84.3 ± 2.5,
92.3 ± 4.1, 89.4 ± 4.2]% for the target scanners. Despite the classifier’s limited
performance due to the small training image size, these results highlight the
effectiveness of our augmentation methods in domain adaptation.
Validation on augmentation removal in ESPA. We assessed augmenta-
tion removal for our cross-validated models for ESPATC and ESPARes. Removal
aimed to decrease dissimilarity between augmented images of a source image.
Mean Average Error (MAE) and Jensen–Shannon Divergence (JD) metrics were
used to assess this dissimilarity, reported as mean ± standard deviation (SD)
for images of all scanner pairs and folds. Initially, we augmented images of the
source test set designated for the second step in ESPA, using the configured
augmentation of each fold. Then, the trained ESPA models of each fold were
applied to their corresponding augmented image sets to obtain augmented-free
(harmonized) images. For ESPATC, MAE and JD decreased from 0.071± 0.037
to 0.030± 0.009, and 0.023± 0.030 to 0.012± 0.015 before and after harmo-
nization, respectively. Similarly, for the ESPARes, MAE values decreased from
0.403± 0.107 to 0.135± 0.023, and JD values decreased from 0.012± 0.009 to
0.007±0.006. All changes were statistically significant (paired t-test, p < 0.05),
indicating successful augmentation removal from images.
Validation on harmonization. A robust harmonization method effectively
addresses scanner effects while preserving or enhancing biological signals. We
assessed scanner effects and harmonization through dissimilarity and increased
similarity within matched images, respectively. Accordingly, vxisual, structural,
and biological similarities were examined for both RAW and harmonized RAW.
Scanner effects were visually evident in Fig. 3 as cross-scanner contrast dissim-
ilarity, which reduced after harmonization. CALAMITI disturbed image con-
trast, while MISPEL and Style-Trans slightly smoothed images, and ESPATC

and ESPARes provided better visual quality. Structural similarity increased sig-
nificantly, from 0.81 ± 0.05 for RAW to 0.83 ± 0.04, 0.87 ± 0.04, 0.87 ± 0.05,
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Fig. 4: Detailed statistics on bias and Cohen’s d for biomarkers of AD.

0.83 ± 0.05, and 0.85 ± 0.05 for CALAMITI, Style-Trans, MISPEL, ESPATC,
and ESPARes, respectively, with MISPEL and Style-Trans having the largest
increase. All the increases compared to RAW were statistically significant where
paired t-test (p < 0.05) was used.

We assessed the biological similarity of the top 10 FreeSurfer-derived [35]
AD biomarkers [36]. Bias, computed as mean absolute differences across scan-
ners, focused on cortical thickness and volumes detailed in Supp. Table 2. Har-
monization was confirmed if bias decreased compared to RAW. Results (Fig. 4)
revealed CALAMITI worsened bias for 9 biomarkers. ESPATC and ESPARes out-
performed MISPEL and Style-Trans, reducing bias for 7 and 9 biomarkers com-
pared to 5 for MISPEL and Style-Trans. ESPATC had the largest decreases for
4 cases, while MISPEL, ESPARes, and Style-Trans had 3, 2, and none. Paired t-
tests (p < 0.05) showed significant decreases in 5, 5, and 4 for ESPATC, ESPARes,
and MISPEL, respectively. None were significant for Style-Trans.

Finally, we explored whether harmonization preserved or enhanced biological
signals by comparing Cohen’s d effect sizes between low and high SVD groups for
each AD biomarker. Cohen’s d was computed separately for each scanner, and
the mean±SD across scanners was reported in Supp. Table 2. Harmonization
success was determined by an increase in Cohen’s d compared to RAW. Our
findings (Fig. 4) revealed CALAMITI and Style-Trans’s failure, possibly due to
deteriorated contrast and over-correction. ESPATC and ESPARes each surpassed
MISPEL with 7 increases, while yielding the best Cohen’s d values for 2 and 6
biomarkers, respectively, compared to MISPEL’s 5 increases.

Ablation study. To demonstrate the efficacy of our augmentation methods, we
trained ESPA with random contrast and brightness augmentation [37]. These
techniques involve contrast transformation (XA

n −E(Xn))∗b+E(Xn) and bright-
ness transformation Xn + c, where b and c are uniformly sampled from [0.8, 1.2]
and [−0.1, 0.1], respectively, with E(Xn) representing the mean brain intensity
values in Xn. We repeated experiments for validation on augmentation removal,
confirming reduction in MAE and JD from 0.164 ± 0.088 and 0.028 ± 0.025 to
0.099±0.037 and 0.013±0.016, respectively. However, our structural similar-
ity analysis for harmonization yielded SSIMs similar to that of RAW, suggesting
no significant modification and thus no harmonization.
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4 Discussion and Conclusion

In this paper, we propose ESPA, an unsupervised image harmonization frame-
work addressing common issues with current methods: model robustness, brain
structural modification, and over-correction. ESPA simulates scanner effects on
plentiful images using two novel structure-preserving augmentation methods, en-
abling harmonization through the adaptation of augmented images to a scanner-
middle-ground space in which brain structure is preserved. It also addresses
over-correction through population matching during simulation. Results indi-
cate that our augmentation methods successfully simulate scanner effects and
ESPA performed at least as well as SOTA harmonization methods. However, the
performance of our ESPA models is limited to the scanner types on which they
were trained. Future work will further explore these augmentation methods on
larger multi-site neuroimaging data within a self-supervised framework.
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