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Abstract. As Artificial Intelligence (AI) increasingly integrates into
our daily lives, fairness has emerged as a critical concern, particularly
in medical AI, where datasets often reflect inherent biases due to so-
cial factors like the underrepresentation of marginalized communities
and socioeconomic barriers to data collection. Traditional approaches
to mitigating these biases have focused on data augmentation and the
development of fairness-aware training algorithms. However, this paper
argues that the architecture of neural networks, a core component of
Machine Learning (ML), plays a crucial role in ensuring fairness. We
demonstrate that addressing fairness effectively requires a holistic ap-
proach that simultaneously considers data, algorithms, and architecture.
Utilizing Automated ML (AutoML) technology, specifically Neural Ar-
chitecture Search (NAS), we introduce a novel framework, BiaslessNAS,
designed to achieve fair outcomes in analyzing skin lesion datasets. Bi-
aslessNAS incorporates fairness considerations at every stage of the NAS
process, leading to the identification of neural networks that are not only
more accurate but also significantly fairer. Our experiments show that Bi-
aslessNAS achieves a 2.55% increase in accuracy and a 65.50% improve-
ment in fairness compared to traditional NAS methods, underscoring
the importance of integrating fairness into neural network architecture
for better outcomes in medical AI applications.

Keywords: AI-powered dermatology; Fairness; Neural Architecture Search.

1 Introduction

The democratization of AI is rapidly expanding the use of machine learning,
notably neural networks, across various medical disciplines [31, 33], with derma-
tology leading due to the availability of comprehensive skin lesion datasets [9].
However, unlike general-purpose image datasets like ImageNet [17], skin lesion
datasets often exhibit biases, particularly regarding skin tone. This imbalance
poses a significant challenge for machine learning in dermatology, as it can result
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Fig. 1. Bias issue behind training dataset and three fairness-related factors

in models that, while accurate on average, perform poorly for underrepresented
groups. Our analysis of the ISIC2019 dermatology dataset [5] revealed a notable
accuracy disparity of over 10% between lighter and darker skin tones, despite
an overall accuracy of 81.71% in Fig. 1(i). This issue of skin-type bias is not
unique to academic datasets but is also prevalent in commercial AI applications,
including facial-analysis tools [4] and Skin Image Search platforms [16].

Researches [20, 19] have highlighted that data bias significantly impacts the
fairness of machine learning (ML) models. And Fig. 1(ii) shows that except
data, algorithm and network also affect the fairness, and one observation from
Table 2 shows that co-optimization of these factors yields the best performance.
Through a comprehensive review of the ML process, we’ve found that neural
architectures and training algorithms, alongside data, also influence fairness. In-
terestingly, these factors are interconnected, suggesting that optimizing them
in isolation may not yield the most equitable outcomes. While previous stud-
ies have focused on enhancing fairness from data [28, 22] or algorithmic [7, 21,
8] perspectives, the role of neural architecture remains underexplored. Neural
Architecture Search (NAS), which has gained attention for improving model
performance and efficiency [15, 14], involves search space formulation, architec-
ture evaluation, and optimizer evolution. This process offers a unique avenue to
integrate data processing, training algorithms, and architecture search within a
unified framework, yet fairness considerations have largely been overlooked in
NAS, especially regarding biomedical data.

In response, this paper introduces Biasless-NAS, a comprehensive framework
that leverages NAS for the co-optimization of data, training algorithms, and
neural architecture. BiaslessNAS embeds fairness awareness into each phase of
the NAS process, ensuring that these elements are simultaneously optimized for
fairness in skin lesion dataset analysis. This approach not only addresses the gap
in incorporating fairness into NAS but also sets a new standard for developing
equitable ML models in biomedical applications. Experimental results show that
BiaslessNAS can achieve the highest accuracy with a fairness improvement of
33.13%. With tolerant accuracy degradation, BiaslessNAS can find a fairer neural
architecture with 65.59% fairness improvements.
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2 Related Work

With the biased data in hand, traditional approaches can be divided into two
directions: (1) data bias removal, and (2) fair training. Data bias removal: one
way to remove the bias is by building a balanced dataset, however, it is a time-
consuming process. An alternative way is to employ data augmentation. For
example, [6] generates biased sets to increase the minority data artificially. In
addition to data balance [11, 25], techniques were proposed to modify the training
algorithms in addressing the fairness issue. Authors in [24, 18] applied adversarial
training and add a discrimination module to improve fairness.

Our work stands at a different point to consider the neural architecture in
addressing the fairness issue. We propose a framework to jointly optimize neural
architectures, training algorithms, and data augmentation. The above-mentioned
debiasing methods can be integrated into our framework.

3 Method

3.1 Fairness Metric Definition and Factor Investigation

Given a neural architecture N and datasets ⟨T,D⟩ where T is the training set
and D is the validation set, N is trained on T to generate the model f ′

N , which is
then validated onD to obtain accuracy A(f ′

N , D). Fairness exists because data in
D have additional attributes (e.g., skin tones), which will divide D into groups,
denoted {Dg1 , Dg2 , · · · , DgK}. For example, if a dataset contains two skin tones
(i.e., g1 = light skin and g2 = dark skin), the accuracy of model f ′

N on group
gi is denoted as A(f ′

N , Dgi).
We define the “unfairness score” based on the overall accuracy and the group

accuracy, denoted as U(f ′
N , D). Specifically, in this project, we calculate the

unfairness score [18] U(f ′
N , D) as the L1-norm:

U(f ′
N , D) =

∑
∀gi∈G

{|A(f ′
N , Dgi)−A(f ′

N , D)|}. (1)

Results in Fig 1 (ii) illustrate that different architectures (N) have different
unfairness scores. We further investigate the influence of the training approach
and data preprocessing. In Fig. 1 (ii), we modify the loss function in training
to consider fairness in the training process, denoted as “Training Imp.”, and
we conduct data balancing to increase the samples in minority groups aiming at
improving fairness, denoted as “Data Imp.”. It is clear that both approaches can
reduce the unfairness score. More interestingly, the three factorsN , f ′, andD are
coupled with each other, which indicates that optimizing them simultaneously
is best to minimize the unfairness score.

3.2 BiaslessNAS Framework

Overview of BiaslessNAS framework: Fig. 2 shows the overview of Bi-
aslessNAS, which is composed of 4 components: ➀ reinforcement learning (RL)
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optimizer, ➁ search space, ➂ fairness-aware trainer, and ➃ fairness and accu-
racy evaluator. Specifically, a recurrent neural network (RNN)-based controller
guides the optimization process by sampling a batch generation method (BGM)
and a neural architecture (a.k.a., child network) N in the search space. Then,
the fairness-aware trainer will tune the child network. Next, in the evaluator,
the obtained model from the trainer will be evaluated to obtain accuracy and
unfairness scores. With these metrics, a reward will be generated, which will be
used to update RNN in the controller. We will introduce the details of these
components in the following texts.
➀ RL Optimizer: The controller iteratively predicts the hyperparameters of
the batch generation method BGM and the child network N . In each iteration,
the controller receives a reward to update the RNN network. The reward R is
generated based on the outputs of the evaluator (see ➃), including accuracy
A(f ′

N , D), and unfairness score U(f ′
N , D). R is computed as follows.

R =

{
α ·A(f ′

N , D)− β · U(f ′
N , D) A(f ′

N , D) ≥ AC
−1 otherwise

(2)

where α, β are two scaling factors that could be adjusted according to the
specific demands on accuracy or fairness, and AC is the requirement of the
model accuracy on the full dataset D.

Based on the reward, we employ reinforcement learning to update the con-
troller. Specifically, we apply the Monte Carlo policy gradient algorithm [32]:

∇J(θ) =
1

m

m∑
k=1

T∑
t=1

γT−t∇θ log πθ(at|a(t−1):1)(Rk − b) (3)

where m and T are the batch size and step in each episode. Rewards are dis-
counted by an exponential factor γ, and b is the average exponential moving.
➁ Data/Architecture Fusing Search Space: The search space is composed
of two sets of hyperparameters: (1) hyperparameters for BGM , and (2) hyper-
parameters for child network architecture N .

Batch Generation. The idea of creating BGM is to adjust the composition
of data from different groups in one training data batch. We define oi to be a
ratio, indicating the percentage of images in one batch comes from sub-dataset
Dgi . Let BS be the batch size, then, we have oi × BS to be the number of
images from sub-dataset Dgi , and we have the constraint that

∑
∀gi∈G{oi} = 1.

To avoid accuracy degradation caused by oversampling of minority groups, we
additionally have the following constraint: ∀gi ∈ G, gj ∈ G, if |Dgi | ≤ |Dgj |, then
oi ≤ oj , where |Dgk | indicates the size of sub-dataset Dgk .

Neural Architecture. We apply a linear array of a block as the backbone
architecture. The design of basic blocks is inspired by the existing popular con-
volutional neural networks, including VGG-Net [27], MobileNet [13], and ResNet
[12]. In this work, as shown in Fig. 2 ➁, we involve four types of basic blocks,
including MobileNetV2-inspired ones (i.e., MB and DB), ResNet-inspired block
(RB), and VGG-inspired block (CB). The basic blocks have four hyperparame-
ters, including channel numbers (CH1, CH2, and CH3) and kernel sizes (K).
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Fig. 2. Overview of BiaslessNAS : ➀ controller: generating a reward R and updating
the recurrent neural network (RNN)-based controller; ➁ search space: sampling a set
of hyperparameters based on the updated controller to obtain the batch composition
of groups’ data and a child network; ➂ fairness-aware trainer: on a validated dataset,
training the identified child network on the generated batches; ➃ evaluator: generate
the accuracy and unfairness score for the trained neural network f ′

N .

Kindly note that CH1 is not a searchable hyperparameter. Considering two ad-
jacent blocks (Ai → Aj), CH1 in Aj has the same value as CH3 in Ai. Besides
the four types of blocks, we also enable the block to be a skip operation, so that
it has the flexibility in searching for the depth of the neural network.
➂ Fairness-aware Trainer: Given an identified architecture (i.e., child network
N) and BGM , the fairness-aware trainer trains the child network to generate
a trained model f ′

N . Specifically, we first create batches of data using BGM on
the validation dataset. Then, the model is trained using a fairness-aware loss
function. Finally, after the iterative training process, we can obtain f ′

N .
Particularly, the fairness-aware loss function is formulated by leveraging

the hyperparameters in BGM . Denote Bgi as the sub-batch of samples from
sub-dataset Dgi , and we have |Bgi | = oi × |Dgi |, where | ∗ | is the size of a
dataset/batch, and oi is the ratio in BGM . For each sample s ∈ Bgi , it has a
target label Ts and a prediction results Ps. After the forward propagation, we
apply Cross Entropy to compute the loss, as follows,

L = −
∑
gi∈G

∑
s∈Bgi

{
argmaxgj∈G oj

oi
· Ts logPs}, (4)

where argmaxgj∈G oj identifies the ratio of the largest group to compose a
batch, which is used to form a scaling factor. The final generated fair loss is also
used to complete the backward propagation.
➃ Fairness and Accuracy Evaluator: With the trained model f ′

N , the accu-
racy can be obtained. Meanwhile, the unfairness score can be calculated based
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Table 1. Accuracy (mean±standard deviation) comparisons between the existing neu-
ral architectures and BiaslessNAS using the Top-5 models trained by each neural ar-
chitecture, in terms of highest reward in Eq. 2

Model Light Acc.(%) Dark Acc.(%) Overall(%) Acc Imp.
Unfair.
Score Fair. Imp.

MobilenetV2 81.90±0.78 59.26±1.2 81.69±0.77 baseline
0.2264
±0.0194 baseline

Resnet18 82.54±1.48 63.59±1.14 82.36±1.47 0.67% ↑ 0.1894
±0.0233 16.34% ↑

ResNet34 82.95±0.69 67.18±1.14 82.81±0.67 1.12% ↑ 0.1577
±0.0181 30.34% ↑

MnasNet 76.54±1.20 61.02±3.34 76.40±1.22 5.29%↓ 0.1551
±0.0253 31.49% ↑

Biasless
NAS-Fair 79.58±0.18 71.79±2.57 79.51±0.20 2.18%↓ 0.0779

±0.0252 65.59%↑
Biasless
NAS-Acc 84.37±0.53 69.23±1.81 84.24±0.52 2.55%↑ 0.1514

±0.0226 33.13%↑

on the validate dataset D with Eq. 1. The obtained A(f ′
N , D) and U(f ′

N , D) will
be utilized to calculate the reward in ➀ RL Optimizer.

4 Experiment

Dataset and settings We use the Fair and Intelligent Embedded System Chal-
lenge (ESFair) dataset [3], which is composed of data from ISIC2019, Dermnet[2],
and Atlas[1]. Thera are 5 dermatology diseases for classification. We compare
solutions obtained by BiaslessNAS with a set of existing neural architectures, in-
cluding MobileNetV2 [23], ResNet [30], and MnasNet [29]. All models are trained
from scratch with the same hyperparameters on a GPU cluster with 48 RTX
3080. The learning rate starts from 0.01 with a decay of 0.9 in 20 steps; while
the batch size is 32 with 500 epochs.
Evaluation of BiaslessNAS. Table 1 reports the evaluation results. These
two architectures were obtained from BiaslessNAS with the lowest unfairness
score and the highest accuracy, respectively. Two hyperparameters are used in
the framework: (1) Alpha is the scalable parameter for accuracy, and (2) Beta is
for fairness. We explore two settings: BiaslessNAS-Fair has a larger Beta (0.8)
and a smaller Alpha (0.2), while BiaslessNAS-Acc has a larger Alpha (0.8) and
a smaller Beta (0.2). For a fair comparison of different neural architectures (N),
all competitors are trained using the proposed fairness-aware data processing
(D) and trainer (f ′). As shown in Table 1, it is clear that BiaslessNAS-Fair
can achieve competitive accuracy with the lowest unfairness score over others.
More specifically, the unfairness score of BiaslessNAS-Fair is only 0.0779 on
average, which achieves an improvement of 65.59% compared with MobileNetV2
regarding fairness. On the other hand, BiaslessNAS-Acc achieves the highest
accuracy with the lowest unfairness score against other existing models.
Neural Architecture Visualization. Fig. 3(a)-(b) showcase the neural archi-
tectures derived from BiaslessNAS, highlighting the structural nuances between



Data-Algorithm-Architecture Co-Optimization for Fair Neural Networks 7

0.90

0.82
0.80

0.81

0.77

0.72D
is

p
ar

at
e 

Im
p
ac

t

S
P

D

-0.2264

-0.1894

-0.1577-0.1552

-0.0779

-0.1514

MobilenetV2 ResNet18 ResNet34 MnasNet BiaslessNAS-Fair BiaslessNAS-Acc

(c) Comparations on Existing Models,

BiaslessNAS-Fair in (a), BiaslessNAS-Acc

in (b) on Disparate Impact metric

(d) Comparations on Existing Models,

BiaslessNAS-Fair in (a), BiaslessNAS-Acc

in (b) on Statistical Parity Difference (SPD)

C
o

n
v

 7
*

7

M
B

 6
4

,1
2

8
,6

4
,3

M
B

 6
4

,1
6

,6
4

,3

M
B

 6
4

,1
6

,6
4

,3

M
B

 6
4

,1
6

,6
4

,3

M
B

 6
4

,1
6

,6
4

,3

M
B

 6
4

,6
4

,6
4

,3

M
B

 6
4

,6
4

,6
4

,3

M
B

 6
4

,6
4

,6
4

,3

C
B

 6
4

,2
5

6
,2

5
6

,3

R
B

 2
5

6
,2

5
6

,2
5

6
,3

R
B

 2
5

6
,2

5
6

,2
5

6
,3

L
IN

E
A

R

(b) Visualization of  BiaslessNAS-Acc, # Parameters = 3,165,635

C
o

n
v

 7
*

7

M
B

 6
4

,3
2

,6
4

,3

M
B

 6
4

,3
2

,6
4

,3

M
B

 6
4

,1
6

,6
4

,3

M
B

 6
4

,1
6

,6
4

,3

M
B

 6
4

,1
6

,6
4

,3

M
B

 6
4

,6
4

,6
4

,3

M
B

 6
4

,1
6

,6
4

,3

M
B

 6
4

,1
6

,6
4

,3

C
B

 6
4

,1
6

,1
6

,3

R
B

 1
6

,6
4

,6
4

,3

R
B

 6
4

,6
4

,6
4

,3

L
IN

E
A

R

(a) Visualization of  BiaslessNAS-Fair, # Parameters = 162,851

Fig. 3. Visualization of BiaslessNAS-Fair and BiaslessNAS-Acc, together with their
performance on different fairness metrics
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Fig. 4. Evaluation of fairness-aware trainer on the existing neural architectures

BiaslessNAS-Fair and BiaslessNAS-Acc. Despite sharing identical block types
across layers, these architectures differ in the number of channels employed.
Notably, both incorporate a MobileNet block at the outset for initial feature
processing, followed by denser conventional and Residual blocks tailored to man-
age diverse group features. This visualization underscores the impact of neural
architecture on fairness and suggests that strategically varying block types, par-
ticularly at the beginning and end of the architecture, can synergistically en-
hance fairness outcomes. This observation supports the premise that thoughtful
architectural design is crucial in developing fair and effective architectures.

BiaslessNAS is Fairer on Different Metrics. In addition to the unfair-
ness score defined in Equation 1, we further evaluate BiaslessNAS on other
two commonly used fairness metrics: Disparate impact (DI) [10] and Statistical
Parity Difference (SPD) [18]. Fig. 3(c)-(d) present a comparison. In Fig. 3(c),
BiaslessNAS-Fair stands out by achieving the highest DI value, indicating its
superiority in fairness over other examined architectures. Fig. 3(d) reveals that
models with SPD scores closer to zero are preferable, with BiaslessNAS-Fair and
BiaslessNAS-Acc emerging as the top performers in this regard. These findings
collectively demonstrate that BiaslessNAS effectively identifies solutions that
surpass conventional neural architectures in fairness across different metrics.

Evaluation of fairness-aware trainer: This ablation study is conducted by
fixing the same N&D and comparing results for different f ′. Fig. 4 shows the
evaluation results of the fairness-aware trainer on 4 existing neural architectures.

The baseline for each architecture has the setting of ol
od

=
|Dgl

|
|Dgd

| , which means

that the batch generator will use the same ratio between the number of dark-
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Table 2. Quantitative Analysis of Three Fairness-related Factors on MobileNetV2

Models Acc. Unfairness DI Ranking

MobilenetV2 (Vanilla) 81.05% 0.2325 0.71 5
MobilenetV2 with f ′ 81.34% 0.2105 0.74 4

MobilenetV2 with (D + f ′) 82.14% 0.1528 0.81 2
FairNAS with N [26] 84.06% 0.1755 0.79 3

BiaslessNAS-Acc with (D + f ′ + N) 84.24% 0.1514 0.82 1

skin and light-skin images to load data. On the other hand, the fairness-aware
trainer (denoted as FAT ) changes the ratio of ol

od
to be 1.

In these figures, each dot is associated with one solution: the dots with a
cross represent the baseline approach and the dots represent the FAT approach.
From the results in Fig. 4, we have several observations. (1) FAT can find neural
architectures with lower unfairness scores. (2) But, if the design is to maximize
accuracy regardless of the fairness, then the baseline performs better than FAT
(note that one exception is MobileNetV2, in which FAT dominates the baseline
approach). More specifically, when we compare the fairest architectures (i.e., the
left-most dots for each approach in Fig. 4), FAT can achieve a 10.52%, 50.20%,
36.98%, and 37.82% reduction in unfairness scores on each architecture. The
above results clearly show that with the same neural architecture and data aug-
mentation, the fairness-aware trainer can indeed improve fairness but it should
be careful about the possible accuracy degradation.

Evaluation of different optimization combinations. This ablation study
evaluates various optimization combinations to assess the benefits of co-optimize.
The results, summarized in Table 2, contrast different strategies against a base-
line MobileNetV2 architecture. Initially, we examine MobileNetV2 in its stan-
dard form, followed by versions enhanced with a fairness-aware trainer (denoted
as f ′) and then with both a co-optimized trainer and data augmentation (D+f ′).
The outcomes illustrate that co-optimization significantly enhances the fairness
of MobileNetV2, as indicated by improvements in unfairness scores and disparate
impact metrics. In a further analysis, a fairness-aware Neural Architecture Search
(NAS), termed ”FairNAS,” is introduced. FairNAS seeks to identify fair neural
architectures without incorporating a fairness-aware trainer or data augmen-
tation. Interestingly, FairNAS surpasses the fairness metrics of MobileNetV2
paired with f ′ alone but falls short of the combination of MobileNetV2 with
D + f ′ in fairness metrics, albeit with a slight advantage in accuracy. Introduc-
ing BiaslessNAS-Acc, which integrates data-algorithm-architecture (D+f ′+N)
reveals that this approach outperforms FairNAS by achieving higher accuracy
and further enhancing fairness. This comprehensive co-optimization of data, al-
gorithm, and architecture emerges as the most effective strategy, showcasing
the superior efficacy of simultaneous optimization across these dimensions for
advancing both accuracy and fairness in machine learning models.

The above results give us the following three insights. (1) Neural architecture
indeed affects fairness. It can even make a larger impact on fairness than the



Data-Algorithm-Architecture Co-Optimization for Fair Neural Networks 9

fairness-aware trainer. (2) The neural architecture search is good at identifying
architectures with high accuracy. But without the help of a fairness-aware trainer
and data augmentation, it may not optimize the fairness in the search loop. (3)
Co-optimization is essential to make the best accuracy-fairness tradeoff.

5 Conclusion

In this paper, we delve into the factors influencing fairness in ML systems, unveil-
ing that optimizing models, algorithms, and data collectively can better balance
accuracy and fairness. We introduce a novel framework, BiaslessNAS, designed
for this holistic optimization approach, specifically targeting the inherent biases
in skin lesion datasets. To ensure accuracy and fairness, BiaslessNAS incorpo-
rates a fairness-aware training mechanism that creates balanced data batches and
refines weighted loss to enhance the fairness of minority groups. Additionally,
a reinforcement learning optimizer steers the co-optimization process, proving
that this integrated approach markedly surpasses traditional methods that opti-
mize data, algorithms, and architecture separately. Our evaluations confirm that
co-optimization significantly enhances fairness without compromising accuracy.
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