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Abstract. Scanning laser ophthalmoscopy (SLO) images provide oph-
thalmologists with a non-invasive way to examine the retina for diag-
nostic and treatment purposes. Manual reading SLO images by oph-
thalmologists is a tedious task. Thus, developing trustworthy disease
detection algorithms becomes urgent. However, up to now, there are
no large-scale SLO image databases. In this paper, we collect and re-
lease a new SLO image dataset, named Retina-SLO, containing 7943
images of 4102 eyes from 2440 subjects with labels of three diseases,
i.e., macular edema (ME), diabetic retinopathy (DR), and glaucoma.
To our knowledge, Retina-SLO is the largest publicly available SLO
image dataset for multiple retinal disease detection. While numerous
deep learning-based methods for disease detection with medical images
have been proposed, they ignore the model trust. Particularly, from
a user’s perspective, the detection model is highly untrustworthy if it
makes inconsistent predictions on different SLO images of the same
eye captured within relatively short time intervals. To solve this issue,
we propose TrustDetector, a novel disease detection method, leveraging
eye-wise consistency learning and rank-based contrastive learning to en-
sure consistent predictions and ordered representations aligned with dis-
ease severity levels on SLO images. Experimental results show that our
TrustDetector achieves better detection performances and higher con-
sistency than the state-of-the-arts. Dataset and code are available at
https://drive.google.com/drive/TrustDetector/Retina-SLO.
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1 Introduction

Sight and vision help people to perceive their surroundings and provide vital
information for human survival. Unfortunately, according to WHO, at least one
⋆ Co-corresponding authors

https://drive.google.com/drive/folders/1wzoCppWgUhM_9pN1kVrhmHycc8MYEj06


2 Y. Hu et al.

Untrustworthy Disease 

Detection Model

No ME ME No ME

Input images from the same eye

Inconsistent outputs

(a) Untrustworthy model.

Consistent outputs

Trustworthy Disease 

Detection Model

No ME No ME No ME

Input images from the same eye

(b) Trustworthy model.

Fig. 1: Illustration for trustworthy model and un-
trustworthy model defined in our paper.

1 2 3 4 5 6 7
#images/eye

#e
ye

s

2071

1263

368
172 83 52 93

Fig. 2: Histogram of image
number per eye of our dataset.

billion people around the world have a vision impairment that could have pre-
vented it or is to be addressed [15] due to multiple factors such as insufficient
eye care services and untimely interventions, etc. The causes include but are not
limited to macular edema (ME), diabetic retinopathy (DR), glaucoma, etc. Clin-
ically, scanning laser ophthalmoscopy (SLO) has been widely used as it provides
ophthalmologists with a non-invasive way to assess the condition of symptomatic
patients and screen for fundus diseases in a community setting. To relieve the
workload of ophthalmologists and make eye care services available wider, au-
tomating the analysis of SLO images has an unmet clinical need.

During the past two decades, several SLO image datasets have been collected
and automatic retinal disease diagnosis methods were proposed accordingly. For
example, Haleem et al. collected a dataset containing 65 SLO images from 65
patients and proposed a novel computer-aided method based on regional im-
age features for glaucoma detection [2]. In [22], a dataset named IOSTAR con-
taining 30 SLO images for vessel segmentation has been made publicly avail-
able. More recently, Tang et al. collected a large-scale dataset containing 9392
ultra-widefield SLO images of 1903 eyes from 1022 subjects with diabetes and
proposed to identify the vision-threatening diabetic retinopathy and referable
diabetic retinopathy with ResNet-50 [16]. Besides, numerous retinal disease de-
tection/grading methods focus on images captured by standard fundus cameras
[9] and formulate the tasks as either a classification problem [8][7] or an ordinal
regression problem [19].

However, these SLO image databases were either small in scale of patients
and labels for retinal diseases or unreleased for public. Thus, it is necessity
to build a large-scale SLO image database with labels for multiple diseases to
foster the development of automated retinal disease diagnosis. From the view of
users, previous methods simply treated the disease detection as a classification
task and ignored the ability to make consistent predictions on different SLO
images from the same eye. As illustrated in Fig. 1(a), for different SLO images
from the same eye captured within a relatively short time interval, as no change
happens on the patient’s eye, the disease detection model becomes untrustworthy
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if it outputs different predictions. This seriously reduces the model reliability by
users. To evaluate the reliability of the model, including multiple SLO images
from patients’ same eye in the new database is highly desired.

To start the research of trustworthy retinal disease detection with SLO im-
ages, in this paper, we first build a new large-scale SLO image dataset, which is
comprised of 7943 SLO images of 4102 eyes from 2440 subjects. Specifically, 2071
eyes have one SLO image while 2031 eyes have at least two SLO images as shown
in Fig. 2. Then, we propose a novel trustworthy disease detection method, named
TrustDetector. To enforce the eye-wise consistency across different SLO images,
we introduce an eye-wise consistency learning module, which pulls together the
features of images from the same eye. Besides, considering the disease severity
levels are ordinal, we introduce the rank-based contrastive learning module to
enforce the ordinal distance in feature space be well ordered, increasing the fea-
ture discrinativeness of diseases at different severity levels. The contributions of
this work can be briefly summarized as follows:

– An open-source database: We build an ultra-widefield SLO image database
for trustworthy multiple retinal disease detection. Here, the trustability is
defined as the ability of the model to make consistent predictions on multiple
SLO images from the same eye.

– A trustworthy disease detection method: We design TrustDetector for
multiple disease detection, in which eye-wise consistency learning module
is proposed to learn eye-wise consistent features and rank-based contrastive
learning module is proposed to learn an ordered representation in line with
the disease severity levels. Experimental results show that our TrustDetector
outperforms the state-of-the-arts in terms of both detection metrics such as
accuracy, F-score and Kappa coefficients and consistency related metrics.

2 The SLO Image Dataset: Retina-SLO

Overview Following the standard clinical acquisition protocols, the SLO images
are collected from 2440 patients who ever visited Ophthalmic Outpatient Depart-
ment, Xiangya Hospital of Central South University between January of 2019
and December of 2022. All SLO images were captured with Optos Panoramic200
scanning laser ophthalmoscope. The study was approved by the Medical Ethics
Committee of Xiangya Hospital (reference number: 202311944) and data are
protected without disclosure of any personal information. Informed consent of
the patients was waived due to the retrospective nature of the study.

Image Collection and Labeling 7943 images of 4102 eyes were collected.
Specifically, as illustrated in Fig. 2, 2031 eyes have at least two SLO images,
which enables us to consider the eye-wise consistency of the disease detection
model. Among all the images, 7091 are of the size of 3900× 3072 and 852 are of
the size of 3072× 3072.
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Table 1: Data split where eyessingle and eyesmultiple are the numbers of eyes with
single image and multiple images, respectively.

train validation test total
number of eyes 3053 541 508 4102

– eyessingle 1471 309 291 2071
– eyesmultiple 1582 232 217 2031

number of images 6129 942 872 7943

For each image, the labels for three diseases, i.e., macular edema (ME), di-
abetic retinopathy (DR), and glaucoma were determined via indexing the elec-
tronic medical record system by experienced ophthalmologists. The labels of
ME and DR were binary. Differently, glaucoma at an ultra-early phase does not
always have obvious clinical manifestations and is extremely difficult even for
experienced ophthalmologists to make a confident diagnosis decision. For cases
in which ophthalmologists could not make diagnostic decisions confidently, they
assigned a label “suspicious”. Thus, the labels for the glaucoma included “glau-
coma”, “suspicious” and “non-glaucoma”. For samples whose diagnosis decisions
were recorded in the system, their diagnosis decisions were directly used as the
disease labels. For samples whose diagnosis decisions were not recorded but their
detailed medical treatments were well recorded, the disease labels were deter-
mined by experienced ophthalmologists according to the medical records in the
system. Otherwise, the disease labels were marked as “unclear”.

Data Statistic Characteristics and Dataset Splits We split the dataset
into three subsets, i.e., training, validation and test sets. To ensure that the
disease distributions in three subsets are similar, the stratified sampling strategy
is adopted. Particularly, the eyes with the same labels of three diseases are
allocated into the same group. For each group, the eyes with the same number
of images are then allocated into subgroups. For each subgroups with labels of
“unclear”, 2/3 and 1/3 samples are randomly allocated to validation and test
sets respectively. For subgroups without labels of “unclear”, we adopt random
sampling without replacement strategy to ensure that around 80%, 10% and 10%
eyes are allocated to train, validation and test sets respectively. Tab. 1 illustrates
the numbers of eyes and SLO images in each subset and the class distribution
for each set can be found in the supplementary.

Evaluation Metrics Similar to previous studies [10][19], metrics used to quan-
tify the effectiveness of disease detection models on each disease are accuracy
(Acc) and Cohen’s Kappa [13], and metrics for overall effectiveness evaluation
are mean accuracy over tasks (mAcc) and mean Kappa over tasks (mKappa).
As the class distribution of our Retina-SLO is extremely imbalanced, F1-score
(F1) as a harmonic mean of specificity and selectivity, is used for the two-class
classification of ME and DR, and macro-F1 [14] for the 3-class glaucoma grading.
Similarly, the mean F1-score over tasks mF1 is used. Inspired by [17], two met-
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Fig. 3: Overview of TrustDetector, in which the disease detection network pre-
dicts the risks for multi-diseases and Eye-wise Consistency Learning module
enforces consistent prediction and Rank-based Contrastive Learning module en-
forces the detection network learn ordered representations.

rics to quantify the consistency of disease detection model over different images
of the same eye are used and they are consistency (Con) and correct-consistency
(AccCon) where Con =

∑Mmultiple

m=1 ||
∏

k∈S(m) ŷ
(t)
k ||1/Mmultiple and AccCon =∑Mmultiple

m=1 ||
∏

k∈S(m) ŷ
(t)
k · y(t)k ||1/Mmultiple and Mmultiple is the number of eyes

with multiple images, and S(m) is the image set from the eye m, and || · ||1 is
the L1 norm. Their mean over tasks are denoted as mCon and mAccCon.

3 Methodology

Overview of TrustDetector Given the training dataset {xn, en, yn}Nn=1 with
N data from M eyes for T diseases, where xn is the n-th image sample, and
en ∈ [1,M ] is the index of eye, and yn = {y(t)n }Tt=1 and y

(t)
i ∈ RC(t)

is the
one-hot encoding for disease t with C(t) states, our TrustDetector aims to learn
to make correct and consistent disease predictions for different images with the
same eye index. Fig. 3 illustrates the overview. It consists of three components:
the disease detection network with SLO images {x1, · · · , xB} as input and the
predictions for multiple diseases denoted by {ŷ1, · · · , ŷB} as output for each
batch of size B, the eye-wise consistency learning module pulling together the
features of images with the same eye index, the rank-based contrastive learning
module enforcing the features in embedding space be ordered in line with the
disease severity levels.

Disease Detection Network The disease detection network consisting of an
encoder Enc and a multi-label classifier Cls is supposed to predict the risks of
diseases and grade the disease severity level:

ŷi = Cls(Enc(xi)) . (1)
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Particularly, we employ the modernized CNN backbone ConvNeXt [12] as the
encoder and a linear projector as the classifier. To reduce the mis-classification
on minority classes, inspired by [20], we adopt the class-balanced cross-entropy
loss, which for each batch can be expressed as

LCBCE =
B∑
i=1

T∑
t=1

C(t)∑
c=1

− 1− ω
(t)
c

C(t) − 1
· y(t)i,c log(ŷ

(t)
i,c ) , (2)

where ω
(t)
c is the sample ratio of class c of disease t.

Eye-wise Consistency Learning To enforce the detection model make con-
sistent predictions and increase the reliability, inspired by the supervised con-
trastive learning [5], eye-wise consistency learning module is proposed to pull the
features of images with same eye index while push away features from different
eyes. In detail, given the features in one batch {Enc(xi)}Bi=1 produced by the
backbone where B is the batch size, we project them into a dimension reduced
feature space size of 128 via a multiple layer perception (MLP) with one hidden
layer, followed by a normalization. The output feature vectors are denoted as
{ui}Bi=1. Then, the module enforces eye-wise consistency by minimizing:

LEyeCon =
B∑
i=1

∑
p∈Eye(i)

− 1

|Eye(i)|
log

exp (ui·up/τ)∑
k∈Ā(i) exp (ui·uk/τ)

, (3)

where i is the anchor sample from the eye ei, Ā(i) = {1, · · · , B} \ i is the set
of indices excluding the anchor sample, and Eye(i) = {p ∈ Ā(i) : ep = ei} is
the set of image indices with the same eye index with the anchor sample, and
τ = 0.07 is the temperature hyper-parameter.

Rank-based Contrastive Learning As the disease severity levels are ordinal,
learning an ordered representation where distances of features are ordered in
line with distances in the label space is desired. Taking glaucoma grading as an
example, the increasing order of severity levels is non-glaucoma, suspicious and
glaucoma. What we desire is that, in the ordered embedding space, the feature
distances between samples of non-glaucoma and glaucoma are larger than that
of non-glaucoma and suspicious. To this end, we draw inspiration from Rank-
N-Contrast [21] and propose the rank-based contrastive learning module. For
each batch, we first employ a MLP with one hidden layer to project the features
produced by backbone network to dimension of 128 followed by a normalization.
The normalized features are denoted as {vi}Bi=1. Then, taking sample i as the
anchor sample, for any other sample j in the batch, we contrast them against
each other, enforcing the feature distance between i and j to be less than that
of other samples if their differences of severity levels are greater than that of i
and j. Enumerating over all samples in one batch as anchors, all features are
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enforced to be ordered in line with their orders in label space via minimizing:

LRank =
B∑
i=1

T∑
t=1

∑
j∈Ā(i)

− 1

B(B − 1)
log

exp(vi·vj/η)∑
k∈Rank

(t)
i,j

exp(vi·vk/η)
, (4)

where Rank
(t)
i,j = {k ∈ Ā(i) : ∆

(t)
i,k ≥ ∆

(t)
i,j} is the set of samples satisfying

∆
(t)
i,k ≥ ∆

(t)
i,j . ∆

(t)
i,j represents the severity level difference between sample i and j

regarding disease t and η = 0.07 is the temperature hyper-parameter.

Total Loss The total loss of our TrustDetector is as follows:

Ltotal = LCBCE + α · LEyeCon + β · LRank , (5)

where α and β are hyper-parameters.

4 Experiments

Experimental Setup We implement our TrustDetector on MMPreTrain plat-
form [1]. We use the pre-trained model on ImageNet-21K to initialize the pa-
rameters in the backbone of ConvNeXt V1 [12] and Gaussian distribution with
zeros mean and standard deviation of 0.01 to initialize the parameters associated
with the multi-label classifier in Fig. 3, and uniform distribution to initialize pa-
rameters in MLP1 and MLP2. We employ an AdamW [6] optimizer and train
the model 150 epochs using a linear warm-up of 20 epochs and a cosine decay
learning rate scheduler afterward. The loss weights α and β are set to 0.2 and 0.1
respectively. Other hyper-parameters include: initial learning rate of 5 × 10−5,
weight decay of 0.05, and a batch size of 32.

Pre-processing and Data Augmentation We scale images such that the
short side is 512. For the data augmentation, we keep the long size be 640
via random crop/zero padding for images with long size greater/less than 640.
Besides, random rotation ranging from −30◦ to 30◦, random flipping (horizontal
and vertical) and brightness enhancement (0-0.9) are also used.

Comparisons with State-of-the-arts We compare TrustDetector with two
prevalent CNN classification methods, i.e., ResNet-50 [3] and SENet [4], and
one transformer-based classification method Swin [11] and two latest CNN-based
methods, i.e., ConvNeXt V1 [12] and ConvNeXt V2 [18]. The backbone types
of Swin [11], ConvNeXt V1 [12] and ConvNeXt V2 [18] are the tiny one. Per-
formances on the test set are reported in Tab. 2. Our TrustDetector achieves
mF1 of 58.96% which surpasses the second best Swin [11] by 1.41%. In terms
of mKappa and mAcc, our TrustDetector achieves 53.67% and 93.42% which
surpass the second best ConvNeXt V1 [12] by 2.78% and 0.24% respectively.
In terms of the consistency evaluation metrics, our TrustDetector achieves the
second best in mCon and the best in mAccCon. The performances for each task
can be found in the supplementary.
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Table 2: Multi-disease detection performance comparisons on test set. The av-
erages and standard deviations from 5-trails are reported.

Methods mF1 mKappa mAcc mCon mAccCon

ResNet-50 [3] 56.14±1.26 49.49±2.02 92.62±0.49 93.77±1.00 88.11±0.96

SENet [4] 56.96±2.61 50.48±2.67 92.85±0.50 94.13±1.02 89.05±1.33

Swin [11] 57.55±1.29 49.47±1.54 91.69±0.38 94.12±0.46 87.76±0.45

ConvNeXt V1 [12] 56.47±1.26 50.89±1.96 93.18±0.41 94.35±0.57 89.69±0.81

ConvNeXt V2 [18] 52.04±1.99 47.11±2.41 93.02±0.13 95.17±0.90 89.67±0.58

TrustDetector (ours) 58.96±0.89 53.67±0.88 93.42±0.30 95.07±0.47 90.58±0.47

Table 3: Influences of the proposed learning modules. The averages and standard
deviations over 5-trials on the test set of Retina-SLO are reported.

mF1 mKappa mAcc mCon mAccCon

TrustDetector 58.96±0.89 53.67±0.88 93.42±0.30 95.07±0.47 90.58±0.47

w/o LEyeCon 56.34±1.04 51.22±1.61 93.31±0.24 94.78±0.65 89.83±0.48

w/o LRank 57.78±1.17 51.99±1.23 93.61±0.19 95.32±0.54 90.45±0.35

Table 4: Influences of different settings of α and β in Eq.(5) on validation set.
5-trails are conducted and the averages and standard deviations are reported.

α β mF1 mKappa mAcc mCon mAccCon

0.2 0.05 49.31±1.37 42.39±1.10 93.25±0.37 94.38±0.60 89.86±0.57

0.2 0.1 51.77±1.11 44.85±1.61 93.72±0.19 95.12±0.26 90.75±0.27

0.2 0.2 50.53±1.61 43.71±1.76 93.52±0.26 94.85±0.75 90.50±0.63

0.1 0.1 49.77±1.25 44.10±1.32 93.60±0.15 95.16±0.52 90.52±0.27

0.2 0.1 51.77±1.11 44.85±1.61 93.72±0.19 95.12±0.26 90.75±0.27

0.3 0.1 49.69±1.08 42.30±1.10 93.39±0.23 94.74±0.57 90.14±0.45

How LEyeCon and LRank Contribute? Here we investigate how the pro-
posed eye-wise consistency learning and rank-based contrastive learning con-
tribute to trustworthy disease detection. As shown in Tab. 3, without LEyeCon,
mCon decreases to 94.78% from 95.07% and mAccCon decreases to 89.3% from
90.58%, which indicate that the eye-wise consistency learning module contributes
to consistent disease prediction over multiple SLO images from the same eye.
Without LRank, the class balanced metrics of mF1 and mKappa decrease to
57.78% and 51.99% respectively while the majority class biased metrics of mAcc
and mCon increase to 93.61% and 95.32% from 93.42% and 95.07%, respec-
tively. These results indicate that the rank-based contrastive learning module
can boost the detection performances on minority classes and reduce the miss
identification of samples with diseases.

Influences of Different Settings of α and β Tab. 4 shows the results of
different settings for the loss weights α and β in Eq. (5). Overall, the best option
for α and β are 0.2 and 0.1 respectively.



A New SLO Database and TrustDetector for Retinal Diseases 9

5 Conclusions and Future Work

This paper tackles the issue of trustworthy disease detection with SLO images
from the perspective of detection system users. First, a large-scale SLO image
database is collected and contains 7943 images of 4102 eyes from 2440 subjects
and almost half of eyes have at least two SLO images, which enables the research
of trustworthy disease detection. Then, TrustDetector is proposed for trustwor-
thy disease detection, in which eye-wise consistency module enforces the encoder
learn eye-wise consistent features. Finally, extensive experiments are conducted
and results clearly demonstrate the superiority of our TrustDetector. In summery,
our work opens up new possibilities for investigating the trustworthy detection
of multiple retinal diseases with SLO images. In future, other attack types such
as adversarial attack will be considered to increase the trustability of disease
detection models.
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