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Abstract. Automated alveolar cleft defect restoration from cone beam
computed tomography (CBCT) remains a challenging task, considering
large morphological variations due to inter-subject abnormal maxilla de-
velopment processes and a small cohort of clinical data. Existing works
relied on rigid or deformable registration to borrow bony tissues from
an unaffected side or a template for bony tissue filling. However, they
lack harmony with the surrounding irregular maxilla structures and are
limited when faced with bilateral defects. In this paper, we present a
stochastic anomaly simulation algorithm for defected CBCT generation,
combating limited clinical data and burdensome volumetric image an-
notation. By respecting the facial fusion process, the proposed anomaly
simulation algorithm enables plausible data generation and relieves gaps
from clinical data. We propose a weakly supervised volumetric inpaint-
ing framework for cleft defect restoration and maxilla completion, taking
advantage of anomaly simulation-based data generation and the recent
success of deep image inpainting techniques. Extensive experimental re-
sults demonstrate that our approach effectively restores defected CBCTs
with performance gains over state-of-the-art methods.

Keywords: Deep volumetric inpainting · Maxilla completion · Stochas-
tic anomaly simulation.

1 Introduction

Virtual maxilla completion from a cleft defected cone beam computed tomogra-
phy (CBCT) plays an essential role in the noninvasive diagnosis and treatment
planning of the secondary alveolar bone grafting procedure [7, 19]. Automat-
ic cleft defect location and demarcation enable quantitative assessments of the
cleft defect volume and grafting materials, relieving excessive or inadequate har-
vesting of grafting materials [1, 5, 8, 16]. Conventional methods relied on inter-
active free-form tracing tools [5, 17, 18], thresholding [9] and region-growing [9,
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22]-based segmentation methods, to outline cleft defect boundaries from slices.
However, manual annotation is tedious and highly dependent on practitioner-
s’ experiences. The segmentation techniques are limited in locating labial and
palatal cortice boundaries with almost no textural variations due to soft tissue
padding. Registration-based methods [11, 12, 15, 18] exploit shape priors from
unaffected sides or normal templates for maxilla completions, though highly re-
lying on template selection and semantic correspondence around defects.

With recent advances in deep neural networks, learning-based pixel-level
image-inpainting models have gained great success. The deep inpainting models
use the generative adversarial network (GAN) and autoregressive models to en-
force the generative capacities for filling missing pixels [13, 20, 24, 25]. Random
masking with a certain distribution makes it feasible to learn the inpainting mod-
el in an unsupervised manner, greatly relieving data collection burdens. However,
when confronted with bony tissue restorations from defected volumetric CBCT
images, we need to address two challenging issues. First, the cleft defects take on
a large variety of morphologies due to inter-subject abnormal maxilla develop-
ments. The commonly used regular masks are limited to capturing the harmony
of irregular cleft defects and surrounding maxilla for reasonable bony tissue fill-
ing. Unlike the protocol of image inpainting with a predefined binary mask for
content prediction, there is no explicitly defined cleft defect mask for voxel pre-
diction. In particular, automatic demarcation of cleft defects is desirable when
given bony tissue restorations. Second, there is a lack of abundant clinical data
for model learning, considering radiation hazards in volumetric image collection.
Data augmentation with random transformations, such as image cropping and
volumetric deformations, is feasible to combat data deficiencies. However, exist-
ing data augmentation is limited to accounting for the shape diversity of cleft
defects and are suspicious in generalization capacities for bony tissue filling of
clinical defected CBCTs.

Fig. 1. Overview of the proposed stochastic anomaly simulation (SAS) for maxilla
completion framework. The SAS algorithm relies on iterative skeleton tracing and dila-
tion for diversified defected CBCT generation. The mixed clinical CBCT with regular
bounding boxes and SAS-based generated data with irregular defect masks are used
for adversarial learning of the restoration module. The cleft defect mask prediction
module learned from the restored volumes enables cleft defect mask estimation.
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In this paper, we propose a stochastic anomaly simulation (SAS) algorithm
for defected CBCT generation, providing abundant simulated defected CBCT
paired with cleft defect masks for learning the restoration model. The SAS al-
gorithm respects the craniofacial fusion process guided by the Tessier system of
orofacial clefting and simulates a cleft defect mask by iterative skeleton tracing
and dilation, relieving gaps between the generated and clinical data. We present a
weakly supervised volumetric image inpainting model for cleft defect restoration
and maxilla completion, which is learned from clinical and SAS-based simulat-
ed data. Instead of existing image inpainting techniques dependent on random
or predefined masks, the proposed model is capable of identifying the irregular
boundary of cleft defects without requiring voxel-wise annotations. We further
utilize adversarial restoration learning and craniofacial symmetry to encourage
harmonic maxilla restoration. Qualitative and quantitative experiments on the
clinical defected CBCTs demonstrate that the proposed method is effective in
cleft defect restoration and maxilla completion, with performance gains over
state-of-the-art methods. The main contributions of this work are as follows:

– We design a novel stochastic anomaly simulation algorithm for defected
CBCT generation specific to abnormal maxilla developments, providing a
new perspective on shape diversities regarding abnormal fusion of facial pro-
cesses and greatly relieving the data collection and annotation burden.

– We present a volumetric inpainting framework with adversarial restoration
learning and craniofacial symmetry for harmonic volumetric restoration of
missing bony tissues.

– We have evaluated our approach on cleft defect restoration and maxilla com-
pletion on clinically obtained defected CBCTs. Experimental results demon-
strate superior restorations compared with state-of-the-art methods.

2 Method

Fig. 1 shows the workflow of the proposed SAS-based data generation for cleft
defect restoration and maxilla completion from CBCTs. Given a defected CBCT
V ∈ Rn with n voxels, the goal is to infer restored volume Vr ∈ Rn with filled
bony voxels in the cleft defect regions and binary cleft defect mask Y ∈ Rn. To
combat the limited clinical defected CBCTs and burdensome voxel-wise anno-
tation, we propose the SAS algorithm for defected CBCT generation. Given a
normal CBCT Vn with a complete maxilla, the SAS algorithm aims to generate
the simulated defected CBCT Vs and the associated cleft defect mask Ys by
iterative skeleton tracing and dilation. We employ both clinical CBCT Dc and
SAS-based simulated data Ds with irregular defect masks for model training.
Instead of relying on predefined masks, the proposed defect restoration model
is feasible to realize harmony between the filled bony tissues and the maxilla,
by taking advantage of adversarial restoration learning and craniofacial symme-
try. The cleft defect mask prediction module takes the defected CBCT and its
restoration as input, which realizes an end-to-end inference of cleft defect masks.



4 Y. Guo et al.

2.1 Stochastic Anomaly Simulation

Confronted with a small cohort of defected CBCT scans in the clinical study,
we present the SAS algorithm to simulate the inverse facial fusion process to
generate defected CBCTs. Under the Tessier system of orofacial clefting, the
alveolar cleft defect occurs in zones 1-2. To begin with, we conduct skeleton
tracing in the bounding box of zones 1-2. Let su and sl denote sampled points
on the upper and lower bounding planes, respectively. Without loss of generality,
we start skeleton tracing from sl. In the i-th step, the skeleton growing vector
qi is defined using a randomly perturbed vector a and the vector towards su.

qi = qi−1 + µ1a+ µ2

(
∥si−1 − su∥
∥su − sl∥

+ ϵ

)−3

· su − si−1

∥su − si−1∥
, (1)

where a ∼ N (0, I). µ1 and µ2 are the perturbation strength parameters. The
cleft skeleton becomes twisty with an increasing perturbation parameter of µ1.
ϵ is set to 1e-6. The skeleton point is updated as: si = si−1 +

qi
∥qi∥ . Instead of

using the single-voxel skeleton, voxels inside a cube centered at s are put into
the fat skeleton sfat. Considering the cleft defects tend to have increasing cross
sections when they go from the upper dentition to the nasal plane, we define
the side length r of the cube according to its height η(si), and r = η(si)

η(su)
· r0.

r0 denotes the predefined size. η(s) denotes the perpendicular distance from the
skeleton point s to the lower bounding plane. The skeleton tracing terminates
when it reaches a predefined height or the upper bounding plane.

Given the fat skeleton sfat, the cleft defect mask Ys is generated using iter-
ative dilation. Here we apply a set of 3D convolutional dilation filters to the fat
skeleton κ times. κ is the dilation strength parameter. Finally, the volumetric
intersection operator is applied to the maxilla mask Ym and the cleft defect mask
Ys. The resultant cleft defect mask Ys = Ys ⊗ Ym. Fig. 2 shows sampled cleft
defects generated using the SAS algorithm. Under the assumption that the cleft
defect regions are padded with soft tissues, the simulated defected CBCT Vs is
generated by setting voxel values inside the cleft defect to the average value of
soft tissues perturbed by random noise.

2.2 Defected CBCT Restoration

The restoration model is initialized using the simulated data Ds with paired
defected and normal CBCTs. The supervised reconstruction loss is defined using
the l1-norm regarding the restored volume Vr of the simulated defected CBCT Vs

and the normal CBCT Vn, and Lsup =
∑

(Vs,Vn)∈Ds
∥Vn − Vr∥1. By minimizing

Lsup, the restored maxilla from the Vs is required to be consistent with the
ground truth normal CBCT Vn.
Adversarial Restoration Learning from Clinical Data. The defected CBC-
T restoration model performs the voxel-to-voxel translation from the defected
volume to the normal CBCT with the complete maxilla. In order to enforce
consistency between the restored and normal CBCTs, we introduce adversarial
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Fig. 2. Generated cleft defects with various values of (a) sl, and (b) skeleton height.
(c) Randomly generated skeletons (red), where the line between sl and su is plotted in
blue. (d) Generated cleft defects with different dilation strengths κ.

restoration learning for the cleft defect restoration and maxilla completion. Con-
sidering that the defected CBCT in the clinical dataset Dc has no annotations of
the irregular cleft defects or the ground-truth restored volumes, the reconstruc-
tion loss is defined by the masked image similarity and Wasserstein GAN with
gradient penalty (WGAN-GP) [2].

Lrec =
∑

V ∈Dc

∥M̃ ⊙ (V − Vr)∥1 − βEVr∈Pr [h(Vr)] + Lwgan. (2)

Under the observation that the regular bounding box comprises not only cleft
defects but also residual bony tissues needed to be preserved, we define the
residual bone mask Mrb. Since the region of the cleft defects is padded with soft
tissues or air, the entry of Mrb is set to 1 when it belongs to the bony tissues in
the bounding box and 0 otherwise by thresholding. Here we use a mixed mask
M̃ = Mrb ⊕ (1 − Mbb) as the union of the regular bounding box mask Mbb

and the residual bony mask Mrb. The WGAN-GP loss Lwgan = EVr∈Pr [h(Vr)]−
EVn∈Pn [h(Vn)]+λEV̂ ∈P̂n

[∥∇V̂ h(V̂ )⊙Mbb∥2−1]2. The WGAN-GP loss is defined
based on the Kantorovich-Rubinstein duality of the restored CBCT distribution
Pr and the normal CBCT distribution Pn. h denotes the 1-Lipschitz function.
V̂ is defined as a linear combination of samples Vr ∈ Pr and Vn ∈ Pn, and
V̂ = νVr +(1−ν)Vn, ν ∈ [0, 1]. The element-wise product with the mask is used
to constrain the gradient penalty inside the mask region to infer missing voxels.
Symmetric Constraint. Considering the symmetric characteristics of the max-
illa, the restored CBCT Vr is required to satisfy the sagittal symmetric con-
straint. Since there is no annotation of the symmetric plane, we conduct the
rigid alignments between Vr and its sagittally mirrored volume Ṽr. The symmet-
ric regularization loss Lsym = ∥Vr−g(Ṽr)∥1, where g denotes the rigid alignment
operation.

The overall loss function is defined as a weighted combination of supervised
reconstruction, adversarial restoration learning, and symmetric constraints.

L = Lsup + γ1Lrec + γ2Lsym. (3)

The hyperparameters γ1 and γ2 trade off the adversarial volumetric restoration
and the symmetric constraints.
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Cleft Defect Mask Prediction. When given the restored CBCT Vr, the
registration-based attribute transfer and volumetric Boolean operation can be
used to estimate the cleft defect mask. However, they required additional vol-
umetric operations in the online testing process. In contrast, we utilize a 3D
U-Net [6] to model the mapping function f : [V, Vr] → Y for an end-to-end in-
ference of cleft defect masks, which is learned from the simulated data Ds with
ground truth cleft defect masks. Unlike the U-Net-based segmentation model,
which infers defect masks from just defected CBCTs, our approach exploits the
restored volume Vr for a virtual view of bony tissues regarding the cleft defects.
In the online testing process, the input defected CBCT V and its restoration Vr

are fed to the cleft defect mask prediction module for defect map inference.

3 Experiment

Dataset and Metrics. The proposed model is evaluated on the clinical defected
CBCT dataset Dc, consisting of 37 defected CBCTs, which is randomly split into
24, 3, and 10 for training, validation, and testing, respectively. The simulated
dataset Ds consists of 1560 triplets of the simulated defected CBCTs, the normal
CBCTs, and the cleft defect masks generated from 52 clinical CBCTs with com-
plete maxillas using the SAS algorithm, where 90% are used for training and the
remaining for testing. In experiments, the CBCTs are re-sampled to a resolution
of 128 × 128 × 128 with a voxel size of 1.56 mm × 1.56 mm × 1.56 mm. We
analyze the virtual maxilla completion and cleft defect volume estimation using
the Dice similarity coefficient (DSC), the average Hausdorff distance (AHD),
and the mean squared deviation (MSD).

Fig. 3. Maxilla completion on simulated and clinical datasets with unilateral and bi-
lateral cleft defects. (a) Input. (b) Restored CBCTs. (c) Estimated cleft defect masks.
(d) Three views of estimated cleft defect surfaces with the MSD visualized.

Implementation Details. The proposed model is implemented on the inpaint-
ing model [10] using Pytorch toolkit, where the 2D convolutions are replaced by
3D convolutions to handle voxel-level inpainting. The perturbation parameters
µ1 and µ2 in Eq. 1 are set to 0.15 and 0.05 respectively. The hyper-parameters
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in Lrec, Lwgan, L are set as: β = 5e−4, λ = 10, γ1 = 1, and γ2 = 5. The ADAM
optimization algorithm is used with a learning rate of 1e-4 and the momentums
of 0.9 and 0.999. In the training process, we first use the simulated data Ds to
initialize the restoration module and the cleft defect mask prediction module.
Then, we refine the restoration module using adversarial learning and symmetri-
cal constraints by minimizing L. We evaluate the proposed model on a PC with
an NVIDIA GeForce RTX 3090 GPU. The training and online inference take
approximately 140 hours and 0.45 seconds, respectively.
Qualitative Assessment. Fig. 3 illustrates virtual maxilla completion and
cleft defect volume estimation of defected CBCTs from simulated and clinical
datasets. The proposed model is feasible to predict the missing bony tissues in-
side irregular cleft defects, bearing smooth transitions with surrounding residual
bony tissues for reliable virtual maxilla completion and cleft defect volume esti-
mation. Table 1 reports the cleft defect estimation accuracy with a DSC of 0.82
on clinical data and 0.89 on simulated data.

Fig. 4. Overlapping of the ground truth (gray) and estimated cleft defect surfaces
(green) by compared methods.

Comparison. Table 1 and Fig. 4 report quantitative and qualitative results of
cleft defect volume estimation by compared methods, including the rigid mirror
registration [11], Demons [21], and SyN [3]-based registration. We also compare
with the deep learning-based methods, including VM [4], DAE [14], U-Net [6],
and the generative image inpainting (GII) [23] methods. As to the deep learning-
based methods of VM, DAE, and GII, we use the same training and testing
datasets as ours. We train the supervised U-Net-based segmentation model using
paired defected CBCTs and cleft defect masks of Ds. Our method outperforms
the registration-based methods by 0.12 of Mirror, 0.05 of Demons, 0.06 of SyN,
and 0.09 of VM regarding the DSC. Unlike the DAE, which relied on random
noise-based structure restoration, we exploit the adversarial restoration learning
to infer irregular cleft defect masks with performance gains of 0.10, 0.23 mm,
and 0.30 mm in terms of the DSC, AHD, and MSD, respectively. The lack
of textural variations in cranio-caudal and bucco-palatal boundaries makes it
difficult to learn the segmentation model [6]. As to the deep inpainting GII [23],



8 Y. Guo et al.

we extend the inpainting model from 2D images to 3D defected CBCTs for voxel-
level inference of missing bony tissues. The inpainting model is feasible to fill
the masked region, though it does not address the morphological variations of
irregular cleft defects. Instead, we exploit cleft defect simulation and adversarial
restoration learning for voxel-wise tissue inference, outperforming GII by 0.05
and 0.10 regarding the DSC on the clinical and simulated datasets, respectively.

Table 1. Cleft defect estimation accuracies on clinical dataset Dc and simulated dataset
Ds. (SD-simulated data , AL-adversarial learning, and SC-symmetric constraint)

Dc Ds

DSC AHD (mm) MSD (mm) DSC AHD (mm) MSD (mm)
Mirror [11] 0.70±0.18 0.71±1.07 1.25±1.19 0.77±0.17 0.55±0.64 0.90±0.71
Demons [21] 0.77±0.05 0.29±0.12 0.74±0.17 0.77±0.14 0.47±0.37 0.78±0.44
SyN [3] 0.76±0.08 0.32±0.24 0.79±0.30 0.79±0.13 0.44±0.40 0.73±0.44
VM [4] 0.73±0.07 0.38±0.15 0.84±0.22 0.72±0.10 0.63±0.29 1.10±0.36
DAE [14] 0.72±0.09 0.45±0.35 0.92±0.46 0.73±0.10 0.75±0.67 1.22±0.81
DAESD [14] 0.74±0.09 0.42±0.28 0.88±0.41 0.75±0.10 0.60±0.30 1.03±0.38
U-Net [6] 0.75±0.05 0.27±0.12 0.79±0.17 0.53±0.21 1.46±1.21 2.22±1.36
U-NetSD [6] 0.80±0.05 0.23±0.08 0.67±0.11 0.88±0.08 0.16±0.15 0.43±0.24
GII [23] 0.77±0.05 0.33±0.15 0.78±0.22 0.79±0.09 0.42±0.26 0.84±0.34
w/o SD 0.80±0.05 0.26±0.13 0.67±0.22 0.75±0.09 0.52±0.23 0.99±0.29
w/o AL 0.81±0.05 0.26±0.10 0.66±0.16 0.87±0.06 0.19±0.12 0.51±0.22
w/o SC 0.80±0.07 0.24±0.12 0.63±0.23 0.88±0.07 0.19±0.18 0.49±0.32
Ours 0.82±0.04 0.22±0.09 0.62±0.18 0.89±0.06 0.14±0.11 0.42±0.23

Ablation Study. We have conducted an ablation study to validate the SAS-
based simulated data (SD), adversarial restoration learning (AL), and the sym-
metric constraint (SC) as shown in Table 1. Results indicate that cleft defect-
specific data augmentation with the SD and adversarial learning make it feasible
to model shape distributions regarding inter-subject shape variations, enhancing
the generalization capacity for cleft defect estimation. The SD also improves the
DAE and U-Net with an AHD gap of 0.03 mm and 0.04 mm on Dc. Moreover,
the SC on the restored volumes has shown positive effects on both clinical and
simulated datasets. Qualitative results on maxilla completion and defect mask
prediction by variants are shown in the supplementary.

4 Conclusion

This paper has presented an anomaly simulation algorithm for diversified defect-
ed CBCT generation, respecting abnormal maxilla developments and relieving
data collection burden. Given the SAS-based defected CBCT generation, we
have exploited the volumetric inpainting with adversarial restoration learning
and symmetric criteria, where the filled bony tissues are harmonic with the
surrounding maxilla and facilitate cleft defect mask prediction. The proposed
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approach takes advantage of both SAS-based defected CBCT generation and
clinical data, which energizes end-to-end defected CBCT restoration and cleft
defect mask estimation. Experimental results validate the proposed method on
cleft defect volume prediction and maxilla completion.

The proposed SAS algorithm is specific to the 3D craniofacial fusion process
involving the primary or secondary palate. The extension of the SAS algorithm
to adapt to diversified abnormal developments of other diseases or organs de-
serves further study. Another limitation is that the proposed restoration model
produces missing bony tissues conditioned on the input defected CBCTs. Con-
sidering patient-specific bone resorption after the grafting procedure, we would
further investigate time-varying restoration learning in clinical applications.
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