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Abstract. Achieving accurate vessel segmentation in medical images is
crucial for various clinical applications, but current methods often strug-
gle to balance topological consistency (preserving vessel network struc-
ture) with segmentation accuracy (overlap with ground-truth). Although
various strategies have been proposed to address this challenge, they typ-
ically necessitate significant modifications to network architecture, more
annotations, or entail prohibitive computational costs, providing only
partial topological improvements. The clDice loss was recently proposed
as an elegant and efficient alternative to preserve topology in tubular
structure segmentation. However, segmentation accuracy is penalized
and it lacks robustness to noisy annotations, mirroring the limitations
of the conventional Dice loss. This work introduces the centerline-Cross
Entropy (clCE) loss function, a novel approach which capitalizes on the
robustness of Cross-Entropy loss and the topological focus of centerline-
Dice loss, promoting optimal vessel overlap while maintaining faith-
ful network structure. Extensive evaluations on diverse publicly avail-
able datasets (2D/3D, retinal/coronary) demonstrate clCE’s effective-
ness. Compared to existing losses, clCE achieves superior overlap with
ground truth while simultaneously improving vascular connectivity. This
paves the way for more accurate and clinically relevant vessel segmenta-
tion, particularly in complex 3D scenarios. We share an implementation
of the clCE loss function in github.com/cesaracebes/centerline_CE.
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1 Introduction

How do we estimate the performance of an image segmentation model? The
conventional approach is to compute the overlap between target and predicted
volumes, but the community is becoming increasingly aware that measuring
performance of segmentation models is not as straightforward as it seems [19].

https://github.com/cesaracebes/centerline_CE
github.com/cesaracebes/centerline_CE
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For example, it is well-known that when the foreground structures are small,
overlap measures like the Dice Similarity Coefficient (DSC) become unstable
and extremely sensitive to small changes in predictions [26]. Also, if targets of
interest represent objects of varying sizes [17], if it is relevant to differentiate
between under and over-segmentation errors [22], or in instance segmentation
scenarios [13], overlap measures can be problematic.

Alternative segmentation measures include generalized overlap [3], distance
metrics like Hausdorff distance [16], (scalar) volume similarity [22], or topological
correctness [27]. Unfortunately, there is no silver bullet, as any metric will have
its own limitations [26]. However, reflecting on measuring performance is not only
relevant for assessing model quality and comparing between competing solutions,
but also because the kind of performance metric we consider typically dictates
the class of learning approach to adopt, and in particular the loss function to
be optimized [16,27]. In addition, considering downstream applications when
designing medical image segmentation models is crucial, since maximizing simple
overlap might not be enough for clinical purposes.

In this paper, we address the problem of how to improve topological consis-
tency of segmentation models. Applications for topology-preserving segmenta-
tion are manifold, including coronary artery segmentation [32], delineation of the
Circle of Willis [31], rib segmentation [15] or retinal vasculature analysis [1], to
name a few. All these challenging segmentation problems have attracted much
research attention in recent years, with researchers proposing learning strategies
to drive model optimization towards topologically consistent solutions. Some
techniques rely on complementary annotations like adjacent anatomy [30,33],
or vascular biomarkers [34]. Other approaches include adversarial learning [29],
model ensembling [24], or model cascading [18]. While all these techniques can re-
sult in certain performance improvements, they require substantial modifications
to network architectures or the availability of additional manual annotations. A
more reasonable strategy is to build loss functions that encourage topological
consistency in the learning process of segmentation models itself. For instance,
loss functions inspired in topological properties like persistent homology can
provide such benefits, but they are computationally intensive and challenging
to implement, specially in 3D [4,11,28]. A popular alternative are loss functions
that reward a model when it produces topologically consistent segmentations
across its 2D projections [8,23], but it is a very application-dependent strategy.

A computationally efficient topology-inspired loss function that stands out
is the centerline-Dice loss (clDice, [27]), with a straightforward formulation and
implementation that has favoured its adoption. However, being based on the
Dice segmentation loss, clDice inherits some of its negative properties, e.g. lack
of robustness with respect to noisy annotations. In addition, by design clDice
boosts topological consistency at the expense of segmentation accuracy [27].

Unlike the Dice segmentation loss, the Cross-Entropy (CE) loss is usually
considered a more robust choice [6]; best practices recommend the combination
of both losses for optimizing model performance. In this paper, we introduce the
centerline-Cross Entropy (clCE) loss function, which is designed to generate seg-
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Fig. 1: Coronary artery segmentations using clDice and clCE losses in the
ASOCA database. For each loss: Left: 2D image slice of the heart, highlighting
the artery with an arrow. Right: 3D visualization of the resulting segmentations,
showcasing the extracted centerline (dark blue). Green: TPs. Red: FPs and FNs.

mentations maximizing structure overlap, while simultaneously enhancing topo-
logical consistency, as illustrated in Fig. 1. The proposed approach was tested on
a large variety of Open Access vessel segmentation datasets, including 2D and
3D problems in retinal and coronary artery applications.

2 Methodology

2.1 Definitions and Notation

For simplicity, consider a binary segmentation model, Uθ, trained to delineate a
foreground structure; each image x has an associated ground-truth T of the same
spatial size as x but taking values in {0, 1}. The standard goal for Uθ is to max-
imize overlap between (binarized) predictions P and ground-truth T. Overlap is
typically measured as the ratio between |T ∩ P| and |T ∪ P|: if both coincide,
the segmentation is perfect. This observation gives raise to the Intersection over
Union performance metric, and the closely related Dice Similarity Coefficient:

DSC(T,P) =
2|T ∩P|
|T|+ |P|

=
2TP

2TP + FP + FN
=

Precision× Recall

Precision + Recall
, (1)

which is the harmonic mean between Precision and Recall. Here, TP stands for
True Positives, and FP/FN are False Positives/Negatives. From Equation (1) we
see that the DSC does not account for True Negatives, which is considered as a
beneficial property in medical image segmentation, where many pixels are easily
identified as background and can bias the score towards artificially high values.

The next step involves formulating a loss function that can take non-binary
predictions, Uθ(x) = P̂ ∈ [0, 1], compare them to T and return a positive number
L(T, P̂) that becomes lower as the prediction improves. A direct generalization
of Equation (1) leads to the Dice loss LDice, with the Binary Cross-Entropy loss
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LCE being a popular alternative:

LDice(T, P̂) = 1− 2⟨T, P̂⟩
⟨T,T⟩+ ⟨P̂, P̂⟩

, (2)

LCE(T, P̂) = −
∑
i

Ti log(P̂i) + (1−Ti) log(1− P̂i), (3)

where i indexes image voxels. Both losses have complementary properties, with
no consensus on which one is optimal for any given problem, as discussed next.

2.2 Advantages and drawbacks of standard segmentation losses

It is well-known that the DSC, and by extension the Dice loss, suffer from a bias
towards small targets [17,19]. In consequence, if in the course of a batch-wise it-
erative optimization process, a particular batch contains a small foreground with
very few voxels being wrongly predicted, the loss of this sample will dominate
over the others. The same applies when performance is measured on a set of im-
ages and averaged over the individual DSCs, which may be problematic due to
typical annotation ambiguities around foreground borders in medical imaging.

On the other hand, the CE loss is often preferred when robustness is required
[20]. Thanks to its “regional” character (it considers all voxels) and its better
calibration (it heavily penalizes extremely confident and wrong predictions), its
minimization may result in more general solutions [6]. Also, a linear combination
of both losses is sometimes preferred, as in the popular nnUNet framework [12].

Yet another troublesome situation arises when it is beneficial to evaluate a
segmentation as better if it does not break foreground connectivity, i.e., if it
preserves the topological structure of the object to segment, even if a few of its
voxels are missed. This is often the case for foreground objects of tubular shape,
e.g. in vascular segmentation problems. In this case, neither Dice nor the CE
loss reflect relevant properties of an ideal solution.

2.3 Topology-preserving metrics and losses

In a context where it might be more relevant to preserve vessel connectivity,
even if the exact contour is not captured, topology-preserving measures need
to be considered. The most common way to reward topology preservation is
by carrying out a skeletonization process on both the target T and the binary
prediction P, obtaining the corresponding skeletons (or centerlines) ST and SP,
and then calculating some measure of similarity between them. However, it is not
a straightforward process since two close-by skeletons might share little overlap
and still be both valid segmentations.

The metric of choice for tubular-like segmentation problems is the centerline
Dice coefficient (clDice, [27]), which is computed by counting all voxels from SP

inside the target volume T, and then all voxels in ST within the predicted volume
P. This gives raise to the definition of Topology-Precision and Topology-Recall :
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Tprec(T,P) =
|T ∩ SP|
|SP|

, Trecall(T,P) =
|P ∩ ST|
|ST|

. (4)

The clDice metric is then defined by analogy to the DSC as the harmonic mean
between Tprec and Trecall. In order to turn the clDice metric into a loss function,
we need a way of extracting skeletons from non-binary predictions P̂. This can
be achieved with soft (gray-scale) morphological erosions and dilations [27]. As
these operations can be written in terms of max-pooling operations, an iterative
skeletonization algorithm can be easily implemented as a neural network layer.

2.4 The centerline-Cross Entropy loss

Our hypothesis is that the clDice loss suffer from similar shortcomings as the
DSC: a lack of robustness to noise and variability in annotations. Since itera-
tive skeletonization methods are noisy processes [21], a non-robust relying on
imperfect skeletons loss may lead to finding suboptimal models. In order to
overcome this limitation, we first need to consider a probabilistic interpretation
of the topology precision and recall metrics in Equation (4), where P denotes
probability:

Tprec(T,P) = P(T|SP), Trecall(T,P) = P(P|ST).

It can be seen that in order to optimize both quantities, we need to maximize the
performance of the model conditioned on voxels belonging to both the skeletons
of the target and the prediction. However, instead of mimicking the Dice loss
mechanism, we propose to emulate the Cross-Entropy philosophy of attaching
a negative logarithmic loss to wrong pixels. When conditioning on the skeleton
of the target, we only need to average the voxel-wise CE loss over the target’s
skeleton ST:

CE-Tprec(T, P̂) = − 1

∥ST∥1
LCE(T, P̂)⊙ ST = − 1

∥ST∥1

∑
i |xi∈ST

Ti log(P̂i). (5)

The part of our loss function that operates over voxels on the prediction’s skele-
ton is less direct, since the skeleton needs to be computed from a non-binary
image. We use the algorithm in [27] for computing a soft-skeleton SP̂, and then
we obtain a weighted average of the voxel-wise CE loss over that soft skeleton:

CE-Trecall(T, P̂) = − 1

∥SP̂∥1
LCE(T, P̂)⊙ SP̂ (6)

= −
∑

i |xi∈SP̂
(Ti log(P̂i) + (1−Ti) log(1− P̂i)) · P̂i∑

i |xi∈SP̂
P̂i

.
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import torch, torch.nn.functional as F

def clCE(y_pred, y_true):
l_ce = F.cross_entropy(y_pred, y_true, reduction=’none’)
y_pred = y_pred.softmax(dim=1)
y_true_sk = soft_skel(y_true)
y_pred_sk = soft_skel(y_pred)
ce_tprec = torch.mul(l_ce, y_true_sk[:, 1]).mean()
ce_trecall = torch.mul(l_ce, y_pred_sk[:, 1]).mean()
return ce_tprec+ce_trecall

Code 1: Implementation of the centerline-Cross Entropy (clCE) loss; soft_skel
computes a soft skeleton.

In these expressions, ⊙ represents the voxel-wise product. Finally, we compute
the sum of both terms, arriving at the definition of the centerline-CE loss (clCE):

LclCE(T, P̂) = CE-Tprec(T, P̂) + CE-Trecall(T, P̂). (7)

Since both operations in Equations (5) and (6) can be expressed as a weighted
average, the resulting implementation consists of a few lines of code, see 1.

3 Experimental analysis

3.1 Datasets, models, and performance evaluation

In order to validate the proposed clCE loss, we carry out experiments on a va-
riety of datasets, all involving vasculature segmentation: 1) The HRF dataset
(link) contains 45 eye fundus images with a resolution of 3504×2336 and 45◦
field of view [2]. 2) The DR-HAGIS database (link) has 40 retinal images with
45◦ FOV from a variety of devices and resolutions, ranging from 2816×1880
to 4752×3168 [10]. 3) The TREND database (link) has 82 retinal images ac-
quired with a hand-held portable camera, at 45º FOV and 2560×1920 pixel
resolution [25]. 4) The FIVES dataset (link) has 800 retinal images with a 50◦
FOV captured at 2048×2048 resolution [14]. FIVES is divided into: FIVES-N
(healthy eyes), FIVES-G (glaucomatous eyes), FIVES-A (age-related macular
degeneration) and FIVES-D (diabetic retinopathy), each with 200 samples. 5)
The ASOCA database (link) has 40 CCTA scans with 0.3-0.4 mm in-plane and
0.625 out-of-plane voxel size [7].

All considered datasets include images from pathological cases and healthy
controls. We deliberately avoid experimenting on legacy low-resolution retinal
datasets like DRIVE, as this is not realistic in current clinical practice. On the
retinal datasets, we employ a 60/20/20 train/validation/test split. For the FIVES
dataset, we train only on non-pathological images, and then test separately on

https://www5.cs.fau.de/research/data/fundus-images/
https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/
https://zenodo.org/records/4521044
https://figshare.com/ndownloader/files/34969398
https://asoca.grand-challenge.org/
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Table 1: Results on the HRF, DR-HAGIS, TREND, and ASOCA datasets. Best perfor-
mance underlined. Green is an increase from baseline performance, red a decrease.

LDice LDice+ 0.5 · LclDice LDice+ LclCE

DSC cl-DSC DSC cl-DSC DSC cl-DSC

HRF 78.93 77.46 75.60
(-3.33)

83.83
(+6.37)

79.34
(+0.41)

78.94
(+1.48)

DR-HAGIS 69.22 68.73 66.62
(-2.60)

74.20
(+5.47)

70.65
(+1.43)

70.06
(+1.33)

TREND 63.92 65.32 61.04
(-2.88)

71.35
(+6.03)

64.54
(+0.62)

67.04
(+1.72)

ASOCA 84.59 84.81 83.42
(-1.17)

84.76
(-0.05)

84.80
(+0.21)

84.95
(+0.14)

each sub-dataset. In the ASOCA database, since the test set is withheld by
challenge organizers, we split the data and run a 5-fold cross-validation analysis.

For training in 2D we use the small U-Net proposed in [5], as it was shown
capable of reaching state-of-the-art results while enabling fast experimentation.
During training, we extract 512×512 patches from the images at native res-
olution, and use a sliding window approach in test time. For training in 3D,
the nnUNet framework from [12] is used in its full-resolution 3D configura-
tion, only modifying the loss function. Exact training details are available at
github.com/cesaracebes/centerline_CE.

For comparison purposes, we optimize each model minimizing first the LDice

loss, and then using LDice +LclDice, which is the setup proposed in the original
work. However, this loss function showed a very unstable behaviour, which was
fixed by halving the contribution of LclDice. We then train with LDice + LclCE ,
and compute the DSC for analyzing segmentation performance, with the clDice
metric assessing topological consistency1. It is expected that the LclDice will lead
to improvements in clDice metric, by sacrificing segmentation accuracy in terms
of DSC, as observed in [27]. Let us stress that we do not expect the clCE loss to
outperform the clDice loss in terms of the clDice metric, but rather to improve
topological consistency without sacrificing segmentation performance.

3.2 Numerical results

First, results on all retinal datasets, unless FIVES, are provided on Table 1,
together with the ASOCA experiment. As expected, in most cases training with
the Dice loss combined with either LclDice or LclCE leads to noticeable improve-
ments in topological consistency. It can also be observed that using LclDice results
in larger clDice metric increases, albeit at the cost of segmentation accuracy, as
evidenced by the decrease in DSC across the board for this loss. In contrast,

1 Supplementary materials contain results with means and deviations.

https://github.com/cesaracebes/centerline_CE
github.com/cesaracebes/centerline_CE
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Table 2: Results on FIVES. Models trained on FIVES-N (non-pathological). A, G, D in-
dicates age-related macular degeneration, glaucomatous eyes and diabetic retinopathy
(pathological), respectively. Best performance underlined. Green means an increase
from baseline performance, and red a decrease.

LDice LDice+ 0.5 · LclDice LDice+ LclCE

DSC cl-DSC DSC cl-DSC DSC cl-DSC

FIVES-N 83.06 80.29 77.14
(-5.92)

83.37
(+3.08)

83.40
(+0.34)

81.28
(+0.99)

FIVES-A 83.81 79.50 80.80
(-3.01)

84.48
(+4.98)

84.10
(+0.29)

80.64
(+1.14)

FIVES-G 71.75 66.88 66.03
(-5.72)

67.81
(+0.93)

71.83
(+0.08)

67.91
(+1.03)

FIVES-D 78.62 73.35 74.59
(-4.03)

79.03
(+5.68)

79.04
(+0.42)

74.65
(+1.3)

training with LclCE leads to increases in both DSC and clDice measures every-
where. It is also interesting to notice that, for the most complex scenario, i.e. the
3D segmentation problem on the ASOCA dataset, the LclDice not only attains
lower segmentation performance, but it is unable to improve the topological con-
sistency of the baseline LDice. Also in this case, the LclCE can enhance results
in both aspects of the problem. Note that we also experimented with replac-
ing LDice with the LCE as a baseline, and in combination with LclDice/LclCE ,
observing exactly the same trends. These results are included in the supplement.

The experiment in Table 2 was designed to verify the hypothesis that the
LclCE inherits the robustness of LCE . Models trained on healthy subjects were
tested on both healthy and pathological images, which results in sub-group per-
formance declines. However, also in this case we observe a similar trend as above:
the LclCE is capable of increasing in all cases both the DSC and the clDice met-
ric, while the LclDice also improves topological consistency, but fails to reach the
segmentation performance of training just with LDice.

4 Conclusions

When segmenting vessel-like structures, it is often a requirement for downstream
tasks that the vascular topology is preserved as faithfully as possible. Existing
topology-preserving losses encourage that behaviour, but they achieve it at the
expense of subpar overall segmentation performance. A simple solution would be
to train two different models, one specialized on topological properties and then
another one on generic segmentation; however, this would be a costly approach,
unfeasible in large 3D segmentation problems. A more reasonable strategy is
to seek loss functions that can improve segmentation in terms of ground-truth
overlap, while also preserving topological properties of the target.
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In this paper we have introduced the centerline-Cross Entropy (clCE), a
new loss function that promotes topology-preserving solutions without sacrific-
ing segmentation accuracy. Our experiments consistently indicate that the clCE
loss achieves better overlap than existing losses, and also manages to improve
vascular connectivity, thereby offering a competitive solution that can be ad-
vantageous when segmenting complex datasets. Future work will be devoted to
compute and learn better skeleton representation, such as with differentiable
methods [21], and graph-neural networks [9].

Disclosure of interests The authors have no competing interests to declare
that are relevant to the content of this article.
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