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Abstract. In the realm of orthognathic surgical planning, the preci-
sion of mandibular deformity diagnosis is paramount to ensure favorable
treatment outcomes. Traditional methods, reliant on the meticulous iden-
tification of bony landmarks via radiographic imaging techniques such as
cone beam computed tomography (CBCT), are both resource-intensive
and costly. In this paper, we present a novel way to diagnose mandibu-
lar deformities in which we harness facial landmarks detectable by off-
the-shelf generic models, thus eliminating the necessity for bony land-
mark identification. We propose the Diagnosis-Reconstruction Trans-
former (DiRecT), an advanced network that exploits the automatically
detected 3D facial landmarks to assess mandibular deformities. DiRecT’s
training is augmented with an auxiliary task of landmark reconstruction
and is further enhanced by a teacher-student semi-supervised learning
framework, enabling effective utilization of both labeled and unlabeled
data to learn discriminative representations. Our study encompassed a
comprehensive set of experiments utilizing an in-house clinical dataset of
101 subjects, alongside a public non-medical dataset of 1,519 subjects.
The experimental results illustrate that our method markedly stream-
lines the mandibular deformity diagnostic workflow and exhibits promis-
ing diagnostic performance when compared with the baseline methods,
which demonstrates DiRecT’s potential as an alternative to conventional
diagnostic protocols in the field of orthognathic surgery. Source code is
publicly available at https://github.com/RPIDIAL/DiRecT.

Keywords: Mandibular deformity diagnosis· Orthognathic surgical plan-
ning · Transformer · Semi-supervised learning.
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1 Introduction

Orthognathic surgery, a critical intervention aimed at correcting jaw deformi-
ties, relies heavily on accurate preoperative diagnosis to ensure optimal treat-
ment planning and patient outcomes. Mandibular deformities, characterized by
deviations in the lower jaw’s position relative to the cranial base, can signif-
icantly impact an individual’s functional and aesthetic aspects. However, the
accuracy of diagnosing these deformities often depends on the clinician’s expe-
rience, introducing subjectivity and variability in the assessment process. The
traditional approach to diagnosing mandibular deformities involves cephalome-
try (or cephalometric measurement analysis), which was introduced by Downs
in 1948 for clinical use [5]. This analytical method, integral to orthodontic di-
agnosis and treatment planning, utilizes specific bony anatomical landmarks to
calculate various measurements, including distances, angles, and ratios, aiming to
assess facial symmetry, growth patterns, and skeletal relationships. Although the
cephalometry approach is widely adopted in clinical practice and have shown ac-
ceptable validity [1,21,11,19,2,16], it faces criticism for oversimplifying the com-
plex anatomical structures of the face, thereby failing to capture the intricate
three-dimensional relationships essential for a comprehensive mandibular defor-
mity assessment. The recent advancements in computer vision and deep learning
have opened new avenues for integrating artificial intelligence (AI) into orthog-
nathic surgical planning [6,9,15,8,4,7,14,17], including the diagnostic process for
mandibular deformities. These models, capable of analyzing vast datasets and
identifying complex patterns, propose a revolutionary paradigm in craniofacial
morphology analysis. Initial attempts to leverage deep learning for this purpose,
such as the use of a 6-layer multilayer perceptron (MLP) [27], have demonstrated
the potential for significant improvements in diagnostic accuracy and efficiency.
However, these methods often necessitate accurate segmentation of bony struc-
tures and precise identification of dense bony landmarks in the volumetric Cone
Beam Computed Tomography (CBCT) images, which is often labor-intensive,
time-consuming, and radioactive risky. Moreover, the efficacy of deep learning
approaches is contingent on the availability of substantial labeled data for train-
ing, a requirement challenging to meet within the medical domain due to the
inherent scarcity of annotations and concerns of data privacy.

In light of these challenges, we introduce an innovative approach, termed
Diagnosis-Reconstruction Transformer (DiRecT), for diagnosing mandibular de-
formities that does not rely on the bony anatomical landmarks and can efficiently
leverage the large-size unlabeled non-medical data along with a small portion
of labeled medical data for training through a semi-supervised learning manner.
The major contribution of our DiRecT approach can be summarized in two-
folds: 1) In stead of using the anatomical bony landmarks as the hint to assess
the mandibular deformity status, we propose to leverage the facial soft tissue
landmarks that can be easily detected by the pre-trained off-the-shelf models.
By redirecting our approach’s input from the bony anatomical landmarks to the
facial soft tissue landmarks, we explored a new way that significantly simplifies
the diagnostic process of mandibular deformities. 2) We developed an innova-



DiRecT for Mandibular Deformity Assessment 3

-40° +40°+20°-20° 0°… … … … … … … … -40° +40°+20°-20° 0°… … … … … … … …

Facial Landmark Detection Model
(off-the-shelf)

… …
+40°

+20°

0°

-20°
-40°… …

… …

… …

+40°

+20°

0°
-40°… …

… …

… …

-20° … …

Step 1: 
3D → 2D facial image projection

Step 3: 
2D → 3D facial landmark back-projection

Step 2: 
2D facial landmark detection

478 facial landmarks
(328 most relevant ones are used)

(b)(a) (c)

Fig. 1. 3D facial landmark extraction through 2D facial landmark detection model.

tive DiRecT network to address the task of mandibular deformity diagnosis
using automatically detected facial landmarks. Our DiRecT network is enhance
with an auxiliary task of facial landmark reconstruction and a teacher-student
diagnoser framework, both of which are demonstrated effective in not only im-
proving the learned representation quality but also fostering a semi-supervised
learning paradigm, substantially reducing our method’s dependence on labeled
medical datasets while showing promising results compared with the conven-
tional methods. We trained our model using a small set of labeled medical data
(101 subjects) together with a large-size non-medical purposed public dataset
(1,519 subjects). The experimental results demonstrate the data and label effi-
ciency of our approach while exhibiting promising diagnostic performance.

2 Method

Sec. 2.1 outlines a 3D facial landmark extraction pipeline using off-the-shelf 2D
landmark detection models, whose result serves as the input for our DiRecT
network, which is elaborated in Sec. 2.2 and Sec. 2.3.

2.1 Facial landmark extraction using the MediaPipe framework

Traditional diagnostic approaches for mandibular deformities predominantly de-
pend on the identification of bony landmarks within volumetric CBCT images—a
process that is both laborious and time-consuming. In this study, we introduce an
alternative methodology that leverages facial landmarks, rather than bony land-
marks, to evaluate mandibular deformities. Facial landmark detection has been
extensively studied within the field of general computer vision, yielding several
high-performance, ready-to-use models, as well as access to substantial public
datasets. Nonetheless, a significant challenge arises from the dimensionality dis-
crepancy between the 2D natural images used in these models and the volumetric
nature of CBCT images or the 3dMD head camera images, making a direct ap-
plication of these models to our medical data infeasible. To bridge this gap, we
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devised an innovative workflow that effectively extracts 3D facial landmarks from
CBCT/3dMD head images utilizing an off-the-shelf facial landmark detection
model trained on large-scale 2D natural images. The procedure of this workflow
is depicted in Fig. 1 and encompasses three primary stages. Initially, we capture
a sequence of images projecting the patient’s 3D facial surface—obtained with
ease from CBCT images via thresholding or from the 3dMD head camera—and
document the corresponding camera parameters. Subsequently, these 2D images
are processed through the chosen facial landmark detection model (in our case,
Google’s MediaPipe [18]) to identify facial landmarks on each photograph. Fi-
nally, we implement ray casting, utilizing the preserved camera parameters, to
back-project the identified 2D landmarks onto the 3D facial surface. By averaging
the back-projected points from all images, we compute the final set of 3D facial
landmarks. The orignal MediaPipe model can identify 478 facial landmarks cov-
ering the whole face. Given that some landmarks are less relevant to mandibular
deformty form, out of CBCT imaging scope, or failed in detection process, we
finally select N=328 facial landmarks (see Fig. 1b) those are stable and shared
across all the experimental subjects. The above innovative procedure effectively
transforms the problem of 3D facial landmark detection into a 2D challenge, well
within the capability range of existing off-the-shelf models. Such an approach cir-
cumvents the need to identify anatomical bony landmarks, thereby streamlining
the diagnostic process for mandibular deformities significantly.

2.2 Mandibular deformity diagnosis using DiRecT network

Capitalizing on the transformative success of Transformer architectures in ana-
lyzing non-image data, we introduce the Diagnosis-Reconstruction Transformer
(DiRecT) network, which is illustrated in Fig. 2. DiRecT is comprised of two
synergistic components: the diagnoser network fD(·|θD) and reconstructor net-
work fR(·|θR). The diagnoser fD(·|θD) ingests 3D facial landmark coordinates
P={Pi∈R3}Ni=1, which are initially embedded into 64D landmark tokens {Xlmki

∈R64}Ni=1. Subsequently, these tokens, concatenated with a learnable 64D class
vector Xcls∈R64, are processed through a Transformer block, utilizing the self-
attention mechanism to distill semantic information. The resultant class to-
ken Zcls∈R64, extracted as the final embedding feature, undergoes transforma-
tion by a linear layer to yield a probability distribution Y ∈[0, 1]3 across three
classes—normal, retrognathic, and prognathic—indicative of the mandibular de-
formity diagnosis. Given the ground-truth diagnosis label Ŷ ∈{0, 1}3, one of the
training objective of the diagnoser network is to minimize the diagnosis loss
Ldiag = CrossEntroy(Y, Ŷ ) by tuning the network parameters θD. In pursuit of
enriching the semantic content encapsulated within the output class token Zcls

and ensuring its discriminative capacity, we instituted a reconstructor network
fR(·|θR) in sequence with the diagnoser. Input to the reconstructor consists of
the class token Zcls, derived from the diagnoser, concatenated with N duplicates
of a learnable mask token Zmsk∈R64 equalling the landmark tokens in quantity.
The intended output of the reconstructor is the reconstructed 3D facial land-
mark coordinates P′={P ′

i}Ni=1. The reconstructor network’s parameters θR are
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Fig. 2. Scheme of the proposed DiRecT network.

optimized by minimizing the reconstruction loss Lreco = MSE(P′,P). Given
that the reconstructor is informed solely by the class token Zcls emanating from
the diagnoser, exacting reconstructed facial landmarks—aligned with the origi-
nal input—compels the class token Zcls to assimilate comprehensive geometric
information of the entire facial landmark set P={Pi}Ni=1. This process, in turn,
aids the diagnostic task predicated on the class token Zcls’s informative nature.

2.3 Semi-supervised learning through teacher-student diagnoser

Given the scarcity of medical data juxtaposed with the abundance of publicly
available facial model data, we advocate for the integration of semi-supervised
learning to fortify the training regimen of our DiRecT. For this purpose, we
duplicate the diagnoser network to function as a teacher f tea

D (·|θteaD ), guiding
the student fstu

D (·|θstuD ) diagnoser network’s training. The teacher diagnoser’s
parameters θteaD are meticulously updated via the exponential moving average
algorithm, based on the corresponding parameters of the student diagnoser θstuD .
Throughout the training phase, original facial landmarks P are subjected to ran-
dom transformations, encompassing random mirroring and rescaling (without
impacts on the diagnostic outcome), to create augmented counterparts P̃. These
original and augmented landmarks are then respectively fed to the teacher and
student diagnosers. Despite discrepancies in their inputs, the output class tokens
Ztea
cls and Zstu

cls from both diagnosers should exhibit consistency, reflecting iden-
tical semantic information relative to facial form. This process can be modeled
by minimizing the consistency loss Lcons = 1 − CosineSimilarity(Zstu

cls , Z
tea
cls ).



6 Xu et al.

This approach circumvents the need for ground-truth diagnostic labels, thereby
permitting the application of this training schema to unlabeled data. Conse-
quently, this expands our dataset breadth and markedly elevates the trained
model’s performance. The overall training objective of our DiRecT network is
L = Ldiag + Lreco + λLcons, where the weight of the consistency loss term λ
linearly increases from 0 to 1 during the training phase to avoid misleading
information from the teacher diagnoser at the beginning of the training.

2.4 Implementation details

Our approach is implemented using the Visualization Toolkit (VTK) [22] and
PyTorch [20]. The model parameters are initialized using Xavier algorithm [10]
and optimized by Adam optimizer [12] with a base learning rate of 0.001 for 800
epochs with a batch size of 64 (32/32 labeled/unlabeled samples). The input
CBCT images are center-aligned with the nose tip of the nose (i.e., the facial
landmark #4 detected by MediaPipe). The landmark coordinate values are nor-
malized by dividing a rescale factor of 100.0 mm after the center-alignment. The
Transformer block involved in our DiRecT network follows the original litera-
ture [24] with a feed-forward network dimension of 128. Softmax and Sigmoid
activation functions are used as the output layers to normalize the output of the
diagnoser and reconstructor networks, respectively. For better reproducibility,
our source code is released at https://github.com/RPIDIAL/DiRecT.

3 Experiments

3.1 Dataset and metric

We conducted experiments using an in-house clinical dataset containing 101 sub-
jects and the public Headspace dataset [3] of 3D human head images containing
1,519 subjects without mandibular deformity labels. Each subject from the in-
house clinical dataset has a whole head CBCT image, from which we extracted
the 3D facial soft tissue surface by applying a simple thresholding and the March-
ing Cube algorithm. A senior oral and maxillofacial surgeon with more than 30
years of clinical experience classified each subject’s anteroposterior mandibular
position as normal (19 subjects), retrognathic (38 subjects), or prognathic (44
subjects), which were used as the ground truth in the following experiments.
Each subject from the Headspace dataset has a 3D head surface acquired by a
3dMD head camera and most of them are rendered with the facial appearance
textures. From this dataset, we selected 917 subjects that fall within the age
brackets considered optimal for orthognathic intervention (Females: 15-45 years;
Males: 18-45 years) to create a representative sample reflective of the target
population for orthognathic surgery. We applied our facial landmark extraction
pipeline (introduced in Sec. 2.1) on both datasets, resulting in the automated
identification of N = 328 key facial landmarks for each subject. We evenly
divided our in-house clincal dataset into four parts (including 25/25/25/26 sub-
jects, respectively) and performed 4-fold cross-validation (three/one folds for

https://github.com/RPIDIAL/DiRecT
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Table 1. Comparison with different mandibular deformity diagnosis methods.

Methods Input Accuracy[%]

Normal Retrognathic Prognathic All

SNB angle Bony landmark 42.11 73.68 88.64 74.26
Facial angle Bony landmark 36.84 84.21 81.82 74.26
MdUL Bony landmark 21.05 78.95 95.45 75.25
MLP [27] Bony landmark 47.37 89.47 97.73 85.15
GCN [13] Facial landmark 63.16 84.21 81.82 79.21
GAT [25] Facial landmark 68.42 86.84 72.73 77.23
SGC [26] Facial landmark 57.89 84.21 84.09 79.21
GTranformer [23] Facial landmark 63.16 84.21 84.09 80.20
DiRecT (ours) Facial landmark 57.89 92.11 86.36 83.17

training/testing, respectively) for evaluation. The Headspace dataset was served
as unlabeled data for the semi-supervised training of our DiRecT network. Clas-
sification accuracy was used as the primary metric to quantitatively assess the
model’s diagnostic performance.

3.2 Comparison with other methods

We first compared the proposed method with the baseline methods for mandibu-
lar deformity diagnosis. The competing methods encompass conventional cephalo-
metric measurements, such as the Sella-Nasion-B (SNB) angle, facial angle, and
mandibular unit length (MdUL), and advanced computational models, includ-
ing an MLP model employing 50 bony landmarks [27], as well as contemporary
neural network architectures adapted to our input modality, such as Graph Con-
volutional Networks (GCNs) [13,25,26] and Transformers [23]. The comparison
results, as summarized in Table 1, illustrate that DiRecT outperforms the tradi-
tional cephalometric methods overall, showcasing its capability to surmount the
inherent limitations of the traditional measurements. Notably, DiRecT demon-
strates superior accuracy over other neural network-based methods that utilize
facial landmarks, reinforcing the benefits of the landmark reconstruction task
and teacher-student diagnoser framework within our approach. While the MLP-
based diagnosis method [27] demonstrates higher accuracy than our method, it
is essential to underscore that DiRecT can achieve its results without relying on
the bony landmarks annotated in CT/CBCT images, thus mitigating exposure
risks and reducing procedural costs. These findings validate the proposed Di-
RecT network as a robust and less invasive alternative for mandibular deformity
diagnosis, offering significant workflow enhancements without compromising di-
agnostic accuracy.
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Table 2. Ablation study on the proposed method.

Models Accuracy[%]

Normal Retrognathic Prognathic All

Ldiag 47.37 84.21 81.82 76.24
Ldiag+Lreco 52.63 92.11 79.55 79.21
Ldiag+Lcons 42.11 92.11 84.09 79.21

Ldiag+Lreco+Lcons (ours) 57.89 92.11 86.36 83.17

3.3 Ablation study

We conduct ablation studies on the proposed method to justify the effective-
ness of the key components within our proposed DiRecT network. Specifically,
four ablation models are included in this study: 1) the base diagnoser network
trained with only the diagnosis loss (Ldiag), serving as the foundation of our ar-
chitecture, 2) an enhanced diagnoser network appended with the reconstructor
network and trained by minimizing both diagnosis and reconstruction losses
(Ldiag + Lreco), 3) an expanded diagnoser model incorporating the teacher-
student consistency loss (Ldiag+Lcons), which adopts the semi-supervised learn-
ing framework, and 4) the full DiRecT network amalgamating all three loss com-
ponents (Ldiag +Lreco +Lcons), representing our complete model as introduced
in this study. The results of the ablation study are shown in Table 2. Using the
diagnoser network alone exhibits the lowest accuracy than other ablation models.
By introducing the reconstructor and teacher-student consistency regularization
into our framework, the diagnosis accuracy increased gradually, finally achieving
our proposed DiRecT network that exhibited the highest accuracy. This result
demonstrates the effectiveness of our two key designs, i.e., 1) the reconstruction
regularization enhancing the semantic information captured by the class token
from the diagnoser network and 2) the teacher-student diagnoser framework al-
lowing the semi-supervised learning on large-size unlabeled data.

4 Conclusion

This study explored a novel way for the diagnosis of mandibular deformities,
which is pivotal to the success of orthognathic surgical planning. The proposed
approach pivots from the conventional reliance on bony landmarks (which are
obtained through time-intensive annotation and radiation-based imaging modal-
ities like CT or CBCT) to the utilization of facial landmarks detectable by off-
the-shelf generic models. This strategic shift not only facilitates a reduction in
resource consumption but also aligns with contemporary efforts to streamline
medical workflows. Our main contribution, the Diagnosis-Reconstruction Trans-
former (DiRecT), benefits from the automated detection of 3D facial landmarks,
effectively employing them as hint for mandibular deformity diagnosis. The aux-
iliary task of landmark reconstruction alongside the innovative teacher-student
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diagnoser framework enhances DiRecT’s performance, allowing it to leverage the
knowledge from unlabeled data while learning more discriminative representa-
tions. The comprehensive experimental evaluation using both an in-house clinical
dataset and a publicly available non-medical dataset has evidenced the efficacy
of DiRecT. With performance that is competitive with established methods, Di-
RecT presents a compelling alternative that streamlines the diagnostic process,
mitigates the need for specialized radiographic imaging, and opens the door to
more accessible orthognathic surgery planning. While the results are promising,
future work may focus on extending DiRecT’s application to a wider range of
craniofacial anomalies, exploring the integration of additional non-invasive diag-
nostic modalities, and validating the approach in multi-center clinical trials to
establish its efficacy in diverse populations.
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