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Abstract. The disparity in access to machine learning tools for medical
imaging across different regions significantly limits the potential for uni-
versal healthcare innovation, particularly in remote areas. Our research
addresses this issue by implementing Neural Cellular Automata (NCA)
training directly on smartphones for accessible X-ray lung segmen-
tation. We confirm the practicality and feasibility of deploying and train-
ing these advanced models on five Android devices, improving medical
diagnostics accessibility and bridging the tech divide to extend machine
learning benefits in medical imaging to low- and middle-income countries
(LMICs). We further enhance this approach with an unsupervised adap-
tation method using the novel Variance-Weighted Segmentation Loss
(VWSL), which efficiently learns from unlabeled data by minimizing the
variance from multiple NCA predictions. This strategy notably improves
model adaptability and performance across diverse medical imaging con-
texts without the need for extensive computational resources or labeled
datasets, effectively lowering the participation threshold. Our method-
ology, tested on three multisite X-ray datasets—Padchest, ChestX-ray8,
and MIMIC-III—demonstrates improvements in segmentation Dice ac-
curacy by 0.7 to 2.8%, compared to the classic Med-NCA. Additionally,
in extreme cases where no digital copy is available and images must
be captured by a phone from an X-ray lightbox or monitor, VWSL en-
hances Dice accuracy by 5-20%, demonstrating the method’s robustness
even with suboptimal image sources.
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1 Introduction

Global access to advanced machine-learning tools for medical imaging reveals
a significant divide between well-resourced environments and remote, under-
served areas. This gap stems not just from the availability of technology but
also from the infrastructure demands of conventional deep learning architectures,
such as UNets [18] and Transformers [19]. To address this issue, it is essential
to focus on frugal healthcare solutions tailored for the last billion, emphasiz-
ing lightweight, efficient models and deployment strategies leveraging existing
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Fig. 1. Neural Cellular Automata enable primary care professionals with data but no
access to infrastructure, to train their models or fine-tune a pre-trained model on a
smartphone.

mobile technology [14]. These strategies aim to extend the reach of advanced
diagnostics to underserved populations. Conventional models, effective for medi-
cal image segmentation, require significant computational resources for training
and deployment [11]. Such demands restrict their use to well-equipped environ-
ments, limiting their adaptability to local data variations [2] in LMICs [3, 6].
While there are minimal UNets optimized for fewer parameters, they cannot
match the performance of their more complex UNet counterparts [11]. This dis-
crepancy highlights a significant obstacle to universal healthcare innovation and
the provision of personalized care for diverse global populations.

In contrast, Neural Cellular Automata (NCA) [8, 15] presents a compelling
alternative to transcend these limitations. Their lightweight nature and efficient
processing capabilities make NCAs uniquely suited for deployment on widely
available devices, such as smartphones, thereby democratizing access to advanced
diagnostic tools. Moreover, NCAs are inherently adaptable and capable of evolv-
ing in response to data variations without the need for extensive computational
resources [11]. This adaptability is crucial for personalizing care (Figure 1), as
it allows NCAs to be fine-tuned on local datasets in remote areas, lowering the
barrier towards geographical and demographic diversity in medical data.

Our work’s major technical contribution is a novel unsupervised adaptation
method for NCAs, the Variance-Weighted Segmentation Loss (VWSL),
that leverages their adaptability to optimize performance on unlabelled data.
By carefully balancing the fine-tuning of model parameters and introducing
controlled variance, our method enables NCAs to learn effectively from diverse
data sources. This approach enhances model performance against distribution
shifts caused by heterogeneous data sources, enabling NCAs to adapt to local
data without extensive infrastructure or labeled data—critical for LMICs where
conventional models like UNets are not feasible due to limited computational
resources.
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In our comparison with traditional UNet architectures [5], advanced mod-
els such as nnUNet [9] and Trans UNet [5], and the Med-NCA [11] model, we
underscore the effectiveness of our VWSL method in segmenting the right and
left lung in X-ray images. X-rays are a widely available and cost-effective imag-
ing modality, making them crucial for diagnosing and managing lung conditions
in diverse healthcare settings. We selected Padchest [4], ChestX-ray8 [20], and
MIMIC-III [10] datasets, using ChexMask masks [7] for segmentation, to mirror
the variety of clinical settings and underscore the adaptability of our approach.
Our method not only improves upon Med-NCA results by 0.7 to 2.8% in Dice
score, but it often surpasses standard UNet models and also shows competi-
tive performance with the nnUNet. Additionally, our experiments demonstrate
our VWSL’s capability to enhance segmentation Dice accuracy by 5-20% when
capturing X-ray images directly from monitors, showcasing adaptability even
in unconventional imaging setups. Crucially, we demonstrate that NCA-based
methods can be efficiently trained and fine-tuned directly on smartphones, high-
lighting a significant advancement towards making personalized, accessible, and
decentralized diagnostic solutions feasible in resource-limited settings. We make
our whole framework available under github.com/MECLabTUDA/M3D-NCA.

2 Methodology

NCAs represent a novel class of models characterized by their dynamic and
adaptable nature, driven by probabilistic updates. This stochasticity enables
NCAs to produce diverse predictions upon multiple executions, a feature not
commonly found in traditional neural networks. The capacity for NCAs to yield
different outcomes from the same input, due to their inherent stochasticity, has
been explored in prior research primarily to gauge the reliability of predictions
[12]. Unlike these previous applications, our approach harnesses the variability
inherent in NCAs to enhance model training and adaptation to new domains.

2.1 Adapting to New Domains with Variance-Based Fine-Tuning

We train Med-NCA for 1500 epochs, following the specifications in the origi-
nal publication with 16 channels, and a batch normalization layer [11, 12], on a
dataset with segmentation labels, typically sourced from a clinical setting. This
initial training phase equips the Med-NCA model with the ability to perform
segmentation tasks relevant to the medical domain of interest. Upon completion,
the trained Med-NCA model, due to its minimal size of only 110.6 kB, can be
distributed to remote locations through various means, including direct phone-
to-phone transfer, email, or integrated within instant messaging platforms, en-
suring deployment versatility. In these remote locations, data is available, yet a
significant challenge emerges from the absence of labels.

To address this challenge, our novel approach involves a two-phase procedure
that utilizes the variability in Med-NCA’s outputs. This process is detailed in
Figure 2, illustrating the method’s application. Initially, we compute the mean
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Fig. 2. Our variance-based fine-tuning VWSL leverages mean predictions from the pre-
trained Med-NCA, along with the corresponding variances. This process enables us to
refine the model by targeting these predictions and modulating their impact based
on variance. Such an approach ensures the model’s adaptation to new domains while
preserving crucial information.

and variance pairs of ten predictions from the Med-NCA on unlabeled data
at the remote location. We use the mean prediction as a surrogate target for
the subsequent fine-tuning phase, directing the model towards the intended seg-
mentation results, preventing the trivial solution of setting all outputs to zero.
Simultaneously, we derive variance maps from these predictions, specifically cal-
culating the standard deviation at each pixel. These maps illuminate regions of
high variance in the predictions (illustrated in Figure 3), indicating areas where
the model’s output fluctuates significantly. The objective during fine-tuning is to
minimize this variance, thereby enhancing the model’s consistency and accuracy
in its predictions.

2.2 Variance-Weighted Segmentation Loss (VWSL)

At the heart of our approach is the novel Variance-Weighted Segmentation
Loss (VWSL), designed to refine the adaptation of Neural Cellular Automata
(NCAs) for medical image segmentation. The VWSL integrates the Dice sim-
ilarity coefficient (DSC) for overlap accuracy and a modified Focal Loss [13],
essential for emphasizing hard-to-segment areas, both adjusted by pixel-wise
variance weighting as the surrogate target. In addition, for each forward pass,
two segmentation outputs o1 and o2 are generated per level, and their difference
is minimized. This integrated loss function is formulated as follows:

VWSL = w(x, y) · [(1− DSC) + FocalLoss] + γ ∗ L1(o1, o2)
where w(x, y) = (1 − 2 ∗ Var(x, y)) represents the variance-based weighting

for each pixel at position (x, y), with Var(x, y) indicating the variance across
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predictions. The regulation factor γ balances the contribution of the variance
minimization loss within the overall loss calculation.

The VWSL strategy directs the training for 100 additional epochs to align
predictions with target segmentation while adaptively modulating learning based
on the confidence level suggested by prediction variance. The VWSL thus enables
targeted model fine-tuning, leveraging the inherent stochasticity of NCAs for
robust adaptation to new domains without labeled data.

M
IM
IC

Padchest

Fig. 3. Variance of Med-NCA trained on ChestX-ray8 and evaluated on MIMIC and
Padchest for segmentation of both lungs.

3 Experimental Results

Our evaluation of the VWSL fine-tuning loss, Med-NCA, and UNet-type meth-
ods focuses on X-ray segmentation of both lungs, utilizing three key datasets:
Padchest [4], ChestX-ray8 [20], and MIMIC-III [10], with ChexMask [7] provid-
ing the according segmentation masks. Emulating low-resource settings, we scale
images to 256 × 256 and utilize distinct sets of 50 samples from each dataset
for training, validation, and testing, respectively. This setup aims to replicate
scenarios of limited data availability. To ensure consistency in our comparisons,
UNet [17], TransUNet, and Med-NCA were all implemented using PyTorch [16]
within the same framework, with the exception of nnUNet, which operates as a
comprehensive end-to-end auto ML pipeline. All experiments were conducted on
an Nvidia RTX 3090Ti and an Intel Core i7-12700. In addition, we also measure
the training time across five different Android devices, namely the Moto G31,
Pixel 1 XL, Poco M5, Samsung S10 and the Pixel 6a.

3.1 Quantitative Comparison and Ablation

The results presented in Table 1 underscore the effectiveness of fine-tuning Med-
NCA across all initial datasets, crucial in real-world scenarios where the training
dataset is determined by availability. They demonstrate notable improvements
in Dice scores across all datasets when compared to the original Med-NCA and
even challenge more parameter-heavy models such as the UNet and nnUNet.
Specifically, the fine-tuned Med-NCA shows improvements ranging from 0.7 to
2.8% in Dice scores across the datasets, indicating a substantial enhancement in
generalization performance to new, unseen domains without requiring labels for
fine-tuning.
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Train Method Dice ↑ ± STD ↓ Parameters ↓ Runs on
On MIMIC ChestX8 Padchest Phone

M
IM

IC

Med-NCA 0.796 ± 0.123 0.816 ± 0.080 0.849 ± 0.052 26432 Yes
VWSL Finetuning - 0.830 ± 0.068 0.867 ± 0.043 26432 Yes

UNet 0.815 ± 0.113 0.792 ± 0.104 0.866 ± 0.045 36950273 No
TransUNet 0.836 ± 0.118 0.858 ± 0.065 0.898 ± 0.031 105323161 No

nnUNet 0.849 ± 0.132 0.828 ± 0.098 0.853 ± 0.126 29966112 No

Che
st
X8

Med-NCA 0.756 ± 0.132 0.899 ± 0.107 0.941 ± 0.061 26432 Yes
VWSL Finetuning 0.784 ± 0.124 - 0.955 ± 0.033 26432 Yes

UNet 0.770 ± 0.128 0.887 ± 0.108 0.958 ± 0.020 36950273 No
TransUNet 0.793 ± 0.119 0.929 ± 0.078 0.969 ± 0.020 105323161 No

nnUNet 0.779 ± 0.149 0.914 ± 0.106 0.949 ± 0.135 29966112 No

Pa
dc

he
st

Med-NCA 0.762 ± 0.135 0.877 ± 0.134 0.954 ± 0.052 26432 Yes
VWSL Finetuning 0.775 ± 0.138 0.884 ± 0.117 - 26432 Yes

UNet 0.782 ± 0.132 0.872 ± 0.118 0.957 ± 0.028 36950273 No
TransUNet 0.796 ± 0.122 0.925 ± 0.076 0.972 ± 0.018 105323161 No

nnUNet 0.795 ± 0.128 0.925 ± 0.085 0.962 ± 0.091 29966112 No

Table 1. Comparison of generalization performance across different datasets of Med-
NCA, fine-tuned Med-NCA (’-’ denotes same domain), and UNet type baselines.

Moreover, the fact that both the original and fine-tuned versions of Med-NCA
can run on smartphones, as evidenced by successful deployments on various de-
vices, contrasts sharply with the high-parameter models that are not feasible for
mobile execution. This distinction highlights the practical benefits of Med-NCA,
offering a balance between model complexity, performance, and deployability in
real-world, resource-constrained settings.

Ablation: The ablation study, detailed in Table 2, explores the impact of
varying the γ weighting in the Variance-Weighted Segmentation Loss (VWSL)
on model performance. As γ increases from 0 to 103, we observe an improvement
in Dice scores, peaking at γ = 103 with scores of 0.775 ± 0.138 on MIMIC and
0.884 ± 0.117 on ChestX8. However, further increasing γ to 104 slightly reduces
performance, suggesting an optimal range for γ that balances variance influ-
ence without overshadowing other loss components. This nuanced optimization
demonstrates the crucial role of γ in enhancing the adaptability and accuracy of
the fine-tuned Med-NCA, especially in settings with limited training data.

Train Method Dice ↑ ± STD ↓
On MIMIC ChestX8

Pa
dc

he
st

VWSL γ = 0 0.753 ± 0.141 0.866 ± 0.140
VWSL γ = 102 0.758 ± 0.142 0.884 ± 0.122
VWSL γ = 103 0.775 ± 0.138 0.884 ± 0.117
VWSL γ = 104 0.761 ± 0.147 0.871 ± 0.122

Table 2. Influence of γ weighting on the variance-based optimization performance.
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Fig. 4. Med-NCA trained on the ChestX8 dataset before and after being fine-tuned on
the MIMIC dataset.

3.2 Qualitative Comparison

The qualitative comparison in Figure 3 illustrates the transformations achieved
by fine-tuning Med-NCA with the Variance-Weighted Segmentation Loss (VWSL).
Initially, the segmentations are marked by noticeable errors, ranging from signif-
icant over-segmentation to the omission of crucial regions. Yet, the application
of VWSL for fine-tuning leads to considerable improvements, yielding segmen-
tations that are noticeably more accurate. This comparison demonstrates the
potential of the VWSL to refine suboptimal initial segmentations into much
more precise results.

3.3 VWSL Improvement on Smartphone X-ray Images

In an experiment addressing scenarios with limited digital access to X-ray scans,
such as rural areas in LMICs, we leveraged smartphones to directly capture im-
ages (Figure 5), introducing specific artifacts such as Moiré effects and excessive
contrast. We tested the Variance-Weighted Segmentation Loss (VWSL) on 5
samples and observed performance improvements of 5-20% Dice. This outcome
highlights our method’s adaptability and efficiency, even with fewer samples,
underscoring its practicality for real-world applications in resource-constrained
settings by allowing for digitizing X-rays to assess diagnostics and monitor dis-
eases remotely.
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Fig. 5. Med-NCA trained on the Padchest dataset before and after being fine-tuned
on pictures taken by a Pixel XL.
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Fig. 6. The training and finetuning time across different Android smartphones of dif-
ferent price classes and release years. With 50 training samples, full training is run for
1500 epochs and finetuning for 100 epochs.

3.4 Training on mobile devices

To enable Neural Cellular Automata (NCA) model execution on smartphones,
we ported Med-NCA to TensorFlow [1] and subsequently to TensorFlow Lite,
given its unique support for on-device training. This process was complemented
by developing a specialized wrapper application, facilitating the loading and
processing of both training and inference data on smartphones.

We assessed the training efficiency on five diverse smartphones: Moto G31,
Pixel 1 XL, Poco M5, Samsung S10, and Pixel 6a, chosen for their varied release
years and price points. Training times varied, ranging from 38 to 82 hours, with
the main influence being the release year and price point. Images of the app and
exemplary results are available in the supplementary material.

All tested devices are used or refurbished, enhancing their affordability and
demonstrating the model’s viability on cost-effective hardware. This approach
emphasizes the potential for broad accessibility of advanced medical imaging
technologies, especially in resource-constrained environments, by utilizing readily
available and affordable smartphones.

4 Conclusion

Our study concludes an initial exploration of deploying Neural Cellular Au-
tomata (NCA) on smartphones for X-Ray segmentation, significantly advancing
the accessibility of advanced diagnostic tools in regions with limited resources. By
introducing the Variance-Weighted Segmentation Loss (VWSL) for unsupervised
adaptation, we have enabled efficient finetuning from unlabeled data, thereby
improving model adaptability and performance across a spectrum of medical
imaging contexts without the reliance on extensive computational resources or la-
beled datasets. Our evaluation across three multisite X-ray datasets—Padchest,
ChestX-ray8, and MIMIC-III—for the segmentation of both lungs has not only
demonstrated notable improvements in accuracy, with gains ranging from 0.7
to 2.8% Dice but also underscored the practicality of implementing these so-
phisticated models on universally accessible smartphones. Direct training and
inference on smartphones, tested across five devices, confirm the viability
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of advanced models for on-device use, greatly enhancing the accessibility of so-
phisticated medical diagnostics. In essence, this work aims to narrow the digital
gap in medical imaging, ensuring that the transformative benefits of machine
learning can reach healthcare practitioners and patients worldwide, regardless of
their location or the resources at their disposal. Through the strategic deploy-
ment of NCAs and the introduction of our unsupervised adaptation method, we
envision a future where personalized medical diagnostics become a global norm,
contributing to the advancement of universal healthcare innovation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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