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Abstract. Abdominal trauma is one of the leading causes of death in
the elderly population and increasingly poses a global challenge. How-
ever, interpreting CT scans for abdominal trauma is considerably chal-
lenging for deep learning models. Trauma may exist in various organs
presenting different shapes and morphologies. In addition, a thorough
comprehension of visual cues and various types of trauma is essential,
demanding a high level of domain expertise. To address these issues, this
paper introduces a language-enhanced local-global aggregation network
that aims to fully utilize both global contextual information and local
organ-specific information inherent in images for accurate trauma de-
tection. Furthermore, the network is enhanced by text embedding from
Large Language Models (LLM). This LLM-based text embedding pos-
sesses substantial medical knowledge, enabling the model to capture
anatomical relationships of intra-organ and intra-trauma connections.
We have conducted experiments on one public dataset of RSNA Abdom-
inal Trauma Detection (ATD) and one in-house dataset. Compared with
existing state-of-the-art methods, the F1-score of organ-level trauma de-
tection improves from 51.4% to 62.5% when evaluated on the public
dataset and from 61.9% to 65.2% on the private cohort, demonstrating
the efficacy of our proposed approach for multi-organ trauma detection.
Code is available at: https://github.com/med-air/TraumaDet
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1 Introduction

Abdominal trauma increasingly affects the elderly population with annual trau-
matic injury-related deaths exceeding five million worldwide [1]. In the quest for
prompt and precise detection of such trauma, deep learning-based methods have
ascended to significant importance [2,3]. However, the complexities of interpret-
ing Computed Tomography (CT) scans for abdominal trauma pose considerable
challenges for deep learning models. First, the heterogeneity in scale and mor-
phology of abdominal organs, coupled with the often subtle manifestations of

https://github.com/med-air/TraumaDet


2 J. Yu et al.

hemorrhage, presents a formidable challenge. Second, achieving a precise under-
standing of visual cues and the diversity of trauma types necessitates a high
level of expertise. Such complexities require deep learning models not only to
recognize diverse patterns but also to interpret complex clinical signs like expert
radiologists [4,5,6]. How to fully exploit the imaging context with varying scales
and morphologies, as well as explore the connection between image and clinical
signs, remains an open question.

To overcome the heterogeneity in scale and morphology for precise disease
diagnosis, various deep learning-based solutions have been increasingly studied.
One widely adopted line has been the utilization of three-dimensional spatial
information to enhance diagnostics [7,8,9]. For example, Ma et al. [10] combine
the convolutional neural network and recurrent neural network to jointly explore
sequential information along slices. Hatamizadeh et al. [9] have harnessed the
potential of 3D transformer-based architecture to learn 3D representations and
capture long-range dependencies between voxels. Despite these advancements,
there remains a tendency in these methodologies to prioritize global information
at the expense of local subtleties, which are imperative for the detection of organ
trauma. Recent studies by Huang et al.[3] and Cheng et al.[2] have attempted to
recalibrate the focus towards a more granular examination of scale heterogeneity.
Their proposed 3D architectures mix visual features at the organ-specific level,
yielding improved results. Nevertheless, these approaches tend to isolate the
examination of each organ without sufficiently considering the synergy between
local and global information streams or the inter-organ relationships, which are
crucial for a holistic understanding of abdominal trauma. Moreover, there exists
an imperative to integrate the imaging context with clinical indicators to achieve
a comprehensive and nuanced detection of trauma.

In this regard, our insight focuses on two pivotal aspects. The first lies in
acquiring imaging context at both local and global scales to tackle the chal-
lenges presented by heterogeneity in scale and morphology. The second involves
incorporating clinical expertise to guide the detection of trauma. Drawing in-
spiration from the training paradigm of contrastive language-image pretrain-
ing (CLIP) [11], our proposed strategy encompasses interpreting clinical signs
through textual input, which subsequently interacts with the image-derived fea-
tures. Then, the critical question is how to ensure the effective integration of
these modalities. The alignment of local-global feature representations or feature-
text correlations may not be inherently congruent.

In this paper, we propose a novel language-enhanced local-global aggregation
network. Our network considers both global and local visual information and is
enhanced by text embeddings obtained from the LLM. In particular, when pro-
vided with a CT scan, we initially extract global and local organ-wise image
features from a pre-trained vision encoder [12]. Subsequently, we employ a dual
attention mechanism, wherein both global and local features serve as keys and
values for each other. This architectural design enables the model to capture vi-
sual representations encompassing both semantics and details. We utilize LLM
text embeddings to further integrate intrinsic anatomical cues into visual repre-
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sentations. This LLM text embedding possesses substantial medical knowledge,
enabling the model to capture anatomical relationships of intra-organ and intra-
trauma connections. In this study, the text embeddings are used in two ways:
first, by enhancing the local vision features through organ-wise prompt, and sec-
ond, by supplying guidance for the entire network through the trauma-category
prompt. Our proposed method is evaluated on one public dataset of contrast-
enhanced CT scans and one private dataset of non-enhanced CT scans. The
effectiveness of our method has been demonstrated with significant performance
improvements and comprehensive analytical studies. Specifically, compared with
previous state-of-the-art methods, our approach increases the organ-level F1
score by 11.1% on public data and 3.3% on private data.
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Fig. 1. The overview of our proposed method, which consists of the local-global feature
fusion network and the language-enhanced module.

2 Methodology

2.1 Preliminaries

We aim to improve abdominal trauma detection, which has historically been
viewed as a problem of directly extracting features from a whole CT scan. Com-
bining with the actual clinical diagnosis knowledge, we refine the information
derived from the whole CT scan and complement it with additional anatomical
and medical information, which can be formulated as Eq. (1). In this equation, S
is the CT scan, Sg is the global semantic information, N is the number of task-
related organ, Ri is the detailed information of the i-th organ, ωl is the intrinsic
anatomical relationships among organs, and ωt is the intra-trauma information:

S ↔ {Sg, {R1, R2, . . . , Ri}} ∪ {ωl, ωt}, i = 1, 2, . . . , N. (1)

The challenge lies in extracting and integrating these multiple pieces of informa-
tion, which are under different scales and modalities. Based on the above thinking
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and problem-setting, we consider to use a language-enhanced local-global aggre-
gation network to address the feature fusion problem across different scales and
modalities for this specific task.

An overview of our proposed method is shown in Fig. 1. First, we introduce
the local-global feature fusion network, which separately extracts global and local
features. These features are then integrated to enable a comprehensive vision rep-
resentation of the input. Subsequently, we present a language-enhanced module
that incorporates additional information from both organ-wise and category-wise
prompts. Finally, we describe the loss function of the entire framework.

2.2 Local-Global Feature Fusion Network

The network architecture comprises a global branch responsible for extracting
global semantic features, a local branch dedicated to capturing local detailed
features, and a fusion module that facilitates feature aggregation. As the in-
put of the local branch, organ Rn is obtained from the CT scan S, in which
Rn

C×h×w×d = ψc(n, S
C×H×W×D), ψc(·) is a trained segmentation model used

to obtain segmentation maps of organs, n is the organ class, C, H, W and D
is indicated the channel, height, width, and depth of the CT scan, h, w, d is
the spatial size of the bounding box, named the “organ box”. In this process,
the organ box is cropped from the sparse segmentation maps acquired by the
segmentation model. The segmentation model used here can be any currently
common segmentation model, such as [13,14].

In the local branch of the network, the local vision encoder component
consists of individual encoders with an equal number of organs being consid-
ered. These encoders are specifically designed to extract corresponding feature
maps for each organ. Therefore, the output of the local branch is acquired by
fl = ψlv1(R1) ⊕ ψlv2(R2)⊕, . . . ,⊕ψlvn(Rn), where n is the number of organs,
ψlvn is the individual encoders for n-th organ, and ⊕ is the element concatenate
operation. In the global branch of the network, the global semantic features Fg

are encoded directly from the original CT scan S by the global vision encoder.
In addition, the feature aggregation module has a transformer-based attention
mechanism, which is used to further enhance the connections between the local
detailed vision feature and the global semantic vision feature. In practice, the
module consists of a multi-head self-attention layer, which is applied six times to
the global and local branches. In this procedure, the output of the global branch
fg, and the local branch fl are reshaped as the query separately, and another as
key, value. This process can be formulated as the following:

ffused(fl, fg) = ϕ(
fl

Qfg
KT

√
d

)fg
V ⊕ ϕ(

fg
Qfl

KT

√
d

)fl
V , (2)

where ϕ(·) is the softmax function, Q, K, and V refer to the mentioned ‘query’,
‘key’, and ‘value’ components reshaped from fl and fg, and d is the dimension
of the key, and the output ffused can be seen as an adapted vision representation
of the anatomical target in the CT scan.
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2.3 Language-Enhanced Module

This module plays a crucial role in leading into semantic information at different
scales through the organ-wise prompt and the category-wise prompt. It incorpo-
rates a text encoder empowered by the CLIP [11,15] to generate text embedding
using a medical prompting template, which can leverage the intrinsic seman-
tic relationships between organs and different types of trauma. The organ-wise
prompt is applied during both the training and inference procedures, and the
category-wise prompt is exclusively involved in the training process to guide the
predictions. During the training stage, the parameters of the text encoder are
frozen and used solely for encoding the organ-wise and category-wise prompts.
During the inference process, only organ-wise prompts are utilized, as they are
generated from organ names in the local branch and are unrelated to labels.

For the organ-wise prompt, let fk be the text embedding of the k-th or-
gans, produced by the pre-trained text encoder and a medical prompt. In this
method, the medical prompt applied the template “a computerized tomography
of a [ORGAN ]”, which has been verified as an efficient template [12], where
[ORGAN ] is a concrete task-related organ name, e.g., “liver, spleen, etc.”. We
combine the text embedding fk and the output feature fl in the local branch to
implement the intrinsic semantic information and acquire the output feature of
the local branch fl by fl ⊙ fk, where ⊙ is the element-wise multiplication.

For the category-wise prompt, it’s generated according to the label and has
a similar template to the organ-wise prompt. Different prompt types are tested
in experiments, as shown in Fig. 2(b)(c), and the one with the best performance
is ultimately chosen. In the chosen type, there are two possible prompts for
each organ when the presence or absence of trauma is considered. If the organ
label is 0, which means the organ doesn’t have trauma, the prompt will be “a
computerized tomography of a [Healthy][Organ]”. If the organ label is 1, which
represents the organ has trauma, the prompt will be “a computerized tomography
of a [Traumatic][Organ]”. In the training procedure, the category-wise prompt
pt, where pt = [pliver, pspleen, pkidneys], is selected according to the label, and
the text embedding ft of the selected category-wise prompt is produced by the
pre-trained text encoder. Then, the text embedding ft is used to calculate the
Kullback-Leibler (KL) loss LKL with the output of the local-global feature fusion
network ffused by the Eq. (3), where X is the set of all possible values:

LKL(ffused, ft) =
∑

x∈X
ffused(x) log

(
ffused(x)

ft(x)

)
. (3)

By performing this calculation, the category-wise semantic features contained
in the text embedding are distilled in the training procedure, enabling them to
exert influence and enhance the prediction in the inference procedure. Finally,
the entire framework is trained as follows:

L = LBCE(f, ffused(fl, fg)) + α ∗ LKL(ffused(fl, fg), ft), (4)

where BCE denotes the Binary Cross-Entropy loss, f is the actual label, and
the α is the trade-off parameter weighting the importance of each component.
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Table 1. Performance comparison on the private dataset with non-enhanced CT.

Methods case
acc.(%)

case
prec.(%)

case
F1(%)

organ
acc.(%)

organ
prec.(%)

organ
F1(%)

3D-ViT [16] 79.3±1.5 84.9±3.2 75.6±2.4 80.6±1.2 43.8±4.1 40.8±2.4
TTADC [10] 79.3±3.0 92.9±2.0 73.2±5.1 87.9±0.5 73.8±3.9 57.6±3.1

Ham. et al. [17] 83.3±0.9 90.9±1.2 80.1±1.1 88.1±0.1 69.9±0.6 61.9±0.3
Huang et al.[3] 75.7±1.7 80.6±3.0 71.2±2.1 87.6±0.5 68.6±2.9 60.0±1.0

CBAM [2] 80.3±1.8 92.5±1.5 75.2±2.7 88.3±0.4 70.8±2.8 59.6±2.8
Ours 84.2±1.3 94.3±1.7 80.8±1.7 89.1±0.3 73.8±2.7 65.2±0.6

3 Experiment

Datasets. We use two datasets to evaluate our methods: one public RSNA ATD
dataset and one private dataset. The publicly available RSNA ATD dataset has
over 4000 contrast-enhanced abdominal CT scans with 200 detailed per-voxel
segmentation labels for the liver, spleen, and kidney. The private dataset was pro-
vided by the First Hospital of Jilin University, which has 600 non-enhanced ab-
dominal CT scans, all with per-voxel segmentation labels for abdominal organs.
All these datasets provide organ-level trauma injury labels, and the resolution of
CT scans is 512 × 512. Annotation of the private dataset for segmentation and
trauma injury labels was initially conducted by ten physicians, with subsequent
verification by two senior radiologists to ascertain accuracy and consistency. We
analyzed their label distribution and presented the results in Fig. 2(a). The blue
bars represent the public dataset, while the orange bars represent the private
dataset. As demonstrated, there exists a misalignment in the label distribution
between the two datasets. This partly explains the performance shift from the
public to the private dataset, which will be discussed in the next sections.
Experimental Setting. To assess the effectiveness of our method, both the
public RSNA ATD dataset and the private dataset are randomly divided into
the training set, validation set, and test set. Specifically, a ratio of 4:1:1 is applied.
For the public dataset, 2640 CT scans are utilized for training the model, 680
CT scans for validation, and 680 CT scans for testing. As for the private dataset,
the number goes to 400, 100, and 100, respectively.
Evaluation Metrics. We utilize two levels of metrics to evaluate the perfor-
mance of all models: case-level metrics to assess the model’s diagnostic outcome
and case-level metrics to evaluate the model’s robustness across different organs.
We report the results using three metrics: accuracy, precision, and F1-score.
Implementation Details. Our code is implemented in Python with MONAI.
Input images are clipped with the window range of [-175,250] and linearly nor-
malized to [0,1]. Isotropic spacing is adopted to re-slice each image to the voxel
size of 1.5×1.5×1.5 mm3. Our method necessitates organ boxes to extract local
organ-wise features. Given that abdominal organ segmentation in CT scans is
largely resolved, we employ a cutting-edge state-of-the-art approach, e.g. Tran-
sUnet [13], to obtain the organ boxes. To accommodate the input size of the
pre-trained vision encoder [12], we cropped the local organ images with a fixed-
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Table 2. Performance comparison on the public dataset with contrast-enhanced CT.

Methods case
acc.(%)

case
prec.(%)

case
F1(%)

organ
acc.(%)

organ
prec.(%)

organ
F1(%)

3D-ViT [16] 70.9±1.4 44.7±2.6 43.2±1.3 86.9±0.4 32.1±3.2 30.3±1.3
TTADC [10] 80.4±0.3 66.5±1.2 47.7±1.1 90.7±0.1 53.7±1.4 35.9±1.6

Ham. et al. [17] 76.2±3.4 44.4±2.3 52.6±2.5 88.6±0.4 45.3±0.5 45.4±2.8
Huang et al.[3] 84.1±0.7 78.5±5.2 58.8±0.6 92.5±0.3 70.6±4.8 50.3±0.6

CBAM [2] 83.9±0.3 78.6±3.1 57.4±3.1 92.8±0.3 74.7±6.0 51.4±1.5
Ours 87.7±0.5 84.7±2.0 66.8±1.1 94.1±0.2 77.6±1.3 62.5±2.1

sized 96×96×96. The global vision encoder adopts the 3D ResNet-50 model [18].
The ViT-B-32 model with CLIP, which has proven effectiveness and wide appli-
cability [12,19], is used as the text encoder to align text and image features more
efficiently. For different types of category-wise prompts, as shown in Fig. 2(c), the
GPT-3.5-turbo is used to generate fine-grained descriptions. Our work focuses on
3D medical volumes, whereas current common models primarily address 2D im-
age captioning [20,21], making it challenging to generalize to 3D data. Therefore,
we generate clinical fine-grained descriptions based on labels by LLM, without
vision inputs. We trained all models using the AdamW optimizer and a warm-
up cosine scheduler for 20 epochs. All models are trained for 400 epochs with
a batch size of 4. We trained the model with a default initial learning rate of
5e− 4, a momentum of 0.9, and a weight decay of 1e− 5 on a single GPU.

3.1 Comparison with State-of-the-Arts Methods

Public Dataset. We compare our language-enhance local-global aggregation
network with several cutting-edge methods. To enhance the performance of these
baseline methods, we focus solely on the abdominal region and crop out the back-
ground. Table 2 provides a comprehensive comparison with all baseline methods,
demonstrating great improvements in our method compared to other state-of-
the-art approaches. Specifically, at the case level, the state-of-the-art baseline
method only achieves an accuracy of 84.1%, a precision of 78.6%, and an F1-
score of 58.8%. In contrast, our method demonstrates superior performance with
an accuracy of 87.7%, a precision of 84.7%, and an F1-score of 66.8%, surpass-
ing all metrics significantly. The improvements are even more pronounced at the
organ level, with the F1-score increasing from 51.4% to 62.5%. These results
highlight the efficacy of our method in multi-organ trauma detection.
Private Dataset. While the efficacy of our method has been proven in the pub-
licly available dataset, the results in the private dataset exhibit more interesting
properties, shown in Table 1. Firstly, without question, our method achieves the
best performance across all metrics. Secondly, if we compare Table 1 and Ta-
ble 2, we observe a significant performance shift in the results of other baseline
methods. For example, TTADC [10] achieves an organ-level F1-score of 57.6%
on the private dataset but only 35.9% on the public dataset. In contrast, our
method maintains good performance on both datasets. The underlying reason,
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Table 3. Ablation analysis of our method on the public CT dataset.
global
branch

local
branch

language
guidance

case
acc.(%)

case
prec.(%)

case
F1(%)

organ
acc.(%)

organ
prec.(%)

organ
F1(%)

✓ 73.24 46.03 54.73 88.48 42.59 48.80
✓ 86.03 80.36 65.46 92.89 69.47 55.66

✓ ✓ 86.03 82.70 64.42 93.24 74.58 56.05
✓ ✓ 84.41 75.68 61.31 92.84 70.16 54.38

✓ ✓ 86.18 77.17 67.59 93.04 68.49 58.48
✓ ✓ ✓ 87.35 84.70 68.61 93.97 78.30 62.15

Fine-grained:

Position:

Category:

{“a dark or hypoechoic appearance from bleeding into surrounding tissues”}
{“an area of swelling or bruising with a soft-tissue appearance”}
{“a tear with a ragged edge and a hemorrhagic appearance ”}

{“upper left”} {“upper right”} {“lower”}

{“Healthy Liver”}

{“Traumatic Kidneys”}
{“Healthy Spleen”}
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Fig. 2. (a). Data distribution and organ-wise performance. (b). Performance of using
different category-wise prompts. (c). Examples of category-wise prompts.

as indicated by the dataset part, is partially attributed to the more pronounced
issue of label imbalance within the public dataset. This finding suggests that our
method exhibits greater robustness in handling variations in data distribution.

3.2 Analytical Study

To demonstrate the importance of each module of our network, as well as the
effect of language prompts used in this study, we have performed comprehen-
sive analytical studies. The results are shown in Table 3 and Fig. 2(c). First
of all, in terms of module design, we find that each module can offer unique
information, as can be observed from the Table 3. All the modules can provide
useful information, with the local branch and language guidance being particu-
larly significant. Second, regarding the effects of different language prompts, we
report the performance in Fig. 2 (b) and (c). From the results, it can be observed
that a fine-grained description is not always good. In our scenario, category-wise
prompts could provide more precise information than fine-grained descriptions,
which could serve as reliable guidance for the network.

4 Conclusion

In this paper, we have proposed a language-enhanced local-global aggregation
network for multi-organ trauma detection. We have evaluated the performance
of our method on two datasets and demonstrated significant improvements com-
pared to other state-of-the-art methods, both in performance and robustness.
This study is among the first to utilize LLM text embedding in multi-organ
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trauma detection. In the future, one research direction is to eliminate the need
for segmentation models and transition our method to weakly-supervised or
unsupervised methods to obtain organ boxes. Furthermore, it is promising to
extend our work to detect abnormalities across various organ types.

Acknowledgement. This work was supported in part by the Shenzhen Portion
of Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone
under HZQB-KCZYB-20200089, in part by National Natural Science Foundation
of China Project No. 12226003 and No. U22A20351, in part by a Hong Kong
Research Grants Council Project No. T45-401/22-N, in part by National Key
R&D Program of China Project 2022ZD0161100, in part by Jilin Provincial Key
Laboratory of Medical Imaging & Big Data Project No. 20200601003JC, and in
part by Jilin Provincial International Joint Research Center for Medical Artificial
Intelligence Precision Diagnosis and Treatment Project No. 020210504008GH.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.



10 J. Yu et al.

References

1. Mohamed Tarchouli, Mohamed Elabsi, Noureddine Njoumi, Mohamed Essarghini,
Mahjoub Echarrab, et al. Liver trauma: What current management? Hepatobiliary
& Pancreatic Diseases International, 17(1):39–44, 2018.

2. Chi-Tung Cheng, Hou-Hsien Lin, Chih-Po Hsu, Huan-Wu Chen, Jen-Fu Huang,
Chi-Hsun Hsieh, Chih-Yuan Fu, I-Fang Chung, and Chien-Hung Liao. Deep learn-
ing for automated detection and localization of traumatic abdominal solid organ
injuries on ct scans. Journal of Imaging Informatics in Medicine, pages 1–11, 2024.

3. Shungen Huang, Zhiyong Zhou, Xusheng Qian, Dashuang Li, et al. Automated
quantitative assessment of pediatric blunt hepatic trauma by deep learning-based
ct volumetry. European Journal of Medical Research, 27(1):305, 2022.

4. Wenkai Yang, Juanjuan Zhao, Yan Qiang, Xiaotang Yang, Yunyun Dong, Qianqian
Du, Guohua Shi, and Muhammad Bilal Zia. Dscgans: Integrate domain knowl-
edge in training dual-path semi-supervised conditional generative adversarial net-
works and s3vm for ultrasonography thyroid nodules classification. In Medical
Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd In-
ternational Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part
IV 22, pages 558–566. Springer, 2019.

5. Yutong Xie, Yong Xia, Jianpeng Zhang, Yang Song, Dagan Feng, Michael Ful-
ham, and Weidong Cai. Knowledge-based collaborative deep learning for benign-
malignant lung nodule classification on chest ct. IEEE transactions on medical
imaging, 38(4):991–1004, 2018.

6. Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Med-
klip: Medical knowledge enhanced language-image pre-training for x-ray diagnosis.
In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 21372–21383, 2023.

7. Nhan T Nguyen, Dat Q Tran, Nghia T Nguyen, et al. A cnn-lstm architecture for
detection of intracranial hemorrhage on ct scans. medRxiv, pages 2020–04, 2020.

8. Xiyue Wang, Tao Shen, Sen Yang, Jun Lan, Yanming Xu, Minghui Wang, Jing
Zhang, and Xiao Han. A deep learning algorithm for automatic detection and
classification of acute intracranial hemorrhages in head ct scans. NeuroImage:
Clinical, 32:102785, 2021.

9. Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko,
Bennett Landman, Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d
medical image segmentation. In Proceedings of the IEEE/CVF winter conference
on applications of computer vision, pages 574–584, 2022.

10. Wenao Ma, Cheng Chen, Shuang Zheng, Jing Qin, Huimao Zhang, and Qi Dou.
Test-time adaptation with calibration of medical image classification nets for label
distribution shift. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 313–323. Springer, 2022.

11. Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural language supervision. In Inter-
national conference on machine learning, pages 8748–8763. PMLR, 2021.

12. Jie Liu, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A Land-
man, Yixuan Yuan, Alan Yuille, et al. Clip-driven universal model for organ seg-
mentation and tumor detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 21152–21164, 2023.



Language-Enhanced Network for Trauma Detection 11

13. Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu,
Alan L Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders
for medical image segmentation. arXiv preprint arXiv:2102.04306, 2021.

14. Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-
Hein. nnu-net: a self-configuring method for deep learning-based biomedical image
segmentation. Nature methods, 18(2):203–211, 2021.

15. Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction
tuning. Advances in neural information processing systems, 36, 2024.

16. Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko,
Bennett Landman, Holger R. Roth, and Daguang Xu. Unetr: Transformers for 3d
medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages 574–584, January 2022.

17. Mohammad Hamghalam, Robert Moreland, David Gomez, Amber Simpson,
Hui Ming Lin, Ali Babaei Jandaghi, Monica Tafur, Paraskevi A Vlachou, Matthew
Wu, Michael Brassil, et al. Machine learning detection and characterization of
splenic injuries on abdominal computed tomography. Canadian Association of
Radiologists Journal, page 08465371231221052, 2024.

18. Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet? In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6546–6555, 2018.

19. Wenxuan Li, Alan Yuille, and Zongwei Zhou. How well do supervised models
transfer to 3d image segmentation. In The Twelfth International Conference on
Learning Representations, volume 1, 2024.

20. Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language models.
In International conference on machine learning, pages 19730–19742. PMLR, 2023.

21. Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei
Yang, Tristan Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a
large language-and-vision assistant for biomedicine in one day. Advances in Neural
Information Processing Systems, 36, 2024.


	Language-Enhanced Local-Global Aggregation Network for Multi-Organ Trauma Detection

