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Abstract. Sensorless freehand 3D ultrasound (US) reconstruction poses
a significant challenge, yet it holds considerable importance in improving
the accessibility of 3D US applications in clinics. Current mainstream so-
lutions, relying on inertial measurement units or deep learning, encounter
issues like cumulative drift. To overcome these limitations, we present a
novel sensorless 3D US solution with two key contributions. Firstly, we
develop a novel coupling pad for 3D US, which can be seamlessly inte-
grated into the conventional 2D US scanning process. This pad, featur-
ing 3 N -shaped lines, provides 3D spatial information without relying on
external tracking devices. Secondly, we introduce a coarse-to-fine opti-
mization method for calculating poses of sequential 2D US images. The
optimization begins with a rough estimation of poses and undergoes re-
finement using a distance-topology discrepancy reduction strategy. The
proposed method is validated by both simulation and practical phantom
studies, demonstrating its superior performance compared to state-of-
the-art methods and good accuracy in 3D US reconstruction.

Keywords: Sensorless · Freehand 3D ultrasound · Coupling pad · Op-
timization.

1 Introduction

Ultrasound (US) imaging is a critical tool in image-guided interventions, pro-
viding guidance for surgical devices and real-time monitoring of tissues. It offers
advantages such as low cost, safety, and portability. In recent years, 3D US
imaging has attracted considerable attention for its improved intuitive visuals
and richer contextual details. The generation of 3D US images can be achieved
through several methods, such as dedicated 3D probes, mechanical scanning, or
freehand scanning paired with external tracking devices [5,14]. Nonetheless, the
cost associated with 3D US probes and the complexities introduced by tracking
or mechanical devices limit their broad adoption in clinical practices.

⋆ Corresponding authors.
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Fig. 1. The proposed coupling pad for sensorless 3D US reconstruction.

Consequently, there is a growing interest in developing lightweight and cost-
effective 3D US solutions tailored for image-guided interventions. A prevalent
approach is combining Inertial Measurement Units (IMUs) with conventional
2D US probes. For instance, Morgan et al. [13] attached a low-cost IMU to a
US probe on a custom single-axis rotating fixture, enabling 3D US generation
from 2D images. More advanced studies focused on integrating deep learning
techniques to enhance the IMU-based solutions, such as the application of con-
volutional neural network (CNN) [16], the deep motion network (MoNet) [7], and
the hybrid transformer encoder [15]. Additionally, Luo et al. [8] also proposed a
multi-IMU-based solution for freehand 3D US reconstruction, aiming to reduce
noise impact from individual IMU data.

Further efforts are being made to develop sensorless 3D US solutions, aiming
to eliminate the need for physical tracking devices on US probes. These sensor-
less solutions are crucial in reducing the costs of 3D ultrasound and enhancing its
accessibility in clinics, especially for underdeveloped countries. Early research in
this area explored speckle decorrelation techniques to estimate relative motion
between neighboring US images by analyzing speckle patterns [1,18]. Recently,
numerous deep learning-based methods have emerged. Prevost et al. [17] were
pioneers in using CNN for estimating transformations between two adjacent 2D
US images. Likewise, several other neural networks were developed to improve
estimation accuracy, including a pyramid warping network [19], a deep network
with a Siamese architecture [2], and a hybrid network combining ResNet and
FlowNetS [11]. Recognizing that a sequence of 2D US frames offers a more
general representation of the US probe’s motion, Recurrent Neural Networks
(RNNs) were introduced in several studies [12,6]. Guo et al. also used sequen-
tial US images, and advanced trajectory estimation of US probe with the Deep
Contextual Learning Network (DCL-Net) [3] and Deep Contextual-Contrastive
Network [4]. Additionally, Luo et al. [9,10] designed an online learning frame-
work (OLF) that improves reconstruction performance by utilizing consistency
constraints and shape priors.

Despite these advancements, deep learning-based methods still face chal-
lenges, such as the difficult estimation of elevational displacement and significant
cumulative drift. Moreover, the effectiveness of deep learning techniques heavily
relies on the training images which vary across different US machines, thereby
limiting their application in clinical settings. Prior sensorless 3D US studies were
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mainly based on analysis of 2D US images, lacking distinct patterns essential for
accurate image localization. In this paper, we developed a novel method for
sensorless 3D US reconstruction, overcoming the above limitation by introduc-
ing obvious markers in US images and establishing a connection between these
markers and image poses.

The paper has twofold contributions: 1) We devised a novel coupling pad
for 3D US reconstruction, which can be easily integrated into the traditional
2D US scanning process. The pad features 3 N -shaped lines, providing 3D spa-
tial information without relying on any tracking devices. 2) We developed a
coarse-to-fine optimization method for the pose calculation from sequential 2D
US images, incorporating a distance-topology discrepancy reduction strategy in
the optimization process. To our knowledge, this is the first study to achieve
sensorless freehand 3D US based on a simple solid coupling pad.

2 Method

The key idea of our solution is incorporating markers into the US images and
linking them to the image poses. To achieve this, we developed a coupling pad
made of solid hydrogel, which was fixed in a handhold fixture, as shown in
Fig. 1. The coupling pad includes three layers of N -shaped nylon lines. During
each scanning session, the pad was affixed to the target object, and sequential
US images with obvious markers could be acquired.

Given a sequence of US images I = {Ii | i = 1, 2, . . . , NI}, our objective is to
estimate the corresponding pose G = {(tx, ty, tz, ϕx, ϕy, ϕz)i | i = 1, 2, . . . , NI}
for each frame. Here, (tx, ty, tz)i corresponds to the components of translation,
and (ϕx, ϕy, ϕz)i represents the Euler angles.

The workflow of our method is depicted in Fig. 2. In the initialization phase,
the 2D coordinates of the maker points are calculated. These coordinates, along
with the geometry of N -shaped lines, are utilized to estimate the translations of
all images. During the optimization phase, the proposed novel distance-topology
discrepancy reduction (DTDR) strategy is employed to refine the initial poses.
Finally, 3D images are reconstructed through interpolation according to [9]. The
details will be discussed in the subsequent sections.

2.1 Initialization

In this step, we assume the image poses exhibit no rotation relative to the
world coordinates. Only the translation was estimated, following the principle of
similar triangles. The world coordinate system, as shown in Fig. 2, is located at
the bottom-left corner of the topmost N -shaped line, with the x, y, and z-axis
colored by red, green, and blue, respectively.

For the ith US image, the detected marker points, generated by NL layers
of N -shaped lines are denoted as Pdet

i ∈ R3NL×2. For the jth layer of N -shaped
lines, we denote its offset from the first layer as bj , and define the image point
of its middle diagonal line as pmij . As shown in Fig. 2, the distances from the



4 L. Dai et al.

ig

y
x

z
O

A

B

3. Interpolation

: parameter to be optimized

Loss calculation

ori
jkp

t
ijk
dep

Points
Simulation

jkv m
ijk
sip

Distance
Constraint dis

top


Topology
Constraint

ig

W

l
ijw

r
ijw

θ

O

A

B

Topmost Layer US Image Ii

z
xy

m
i
si

t
i
de

:

:

Distance-Topology 
Discrepancy
Reduction

Sequential
US images

1. Initialization 2. Optimization

m
ijp

Marker points on image

Simulated points

: calculation process

Fig. 2. Overview of our workflow.

midpoint pmij to the left and right points on the N -shaped line are labeled as wl
ij

and wr
ij , respectively. OB’s length is denoted as W . By applying the principle of

similar triangles, we can calculate the 3D coordinates of pmij and the translation
of the image pose. The calculation is expressed as:

pmij =

[
wl

ij

wl
ij + wr

ij

W, 0,
1

tan θ

wr
ij

wl
ij + wr

ij

W

]T

+ bj , (1)

(tx, ty, tz)i =
1

NL

NL∑
j=1

pmij − r[um
ij , v

m
ij , 0]

T, (2)

where um
ij , v

m
ij denote the pixel coordinates of the middle point in the jth layer

of the ith US image, and r represents image spacing. When N -shaped line is
flipped, the values of wl

ij and wr
ij are swapped.

2.2 Optimization

In this section, the initial image poses are further optimized. Considering that
fabrication errors may cause displacement of the N -shaped lines from their ideal
positions, we also optimize the positions of the N -shaped lines to improve pose
estimation accuracy. To achieve this, we introduce a loss function defined as:

L = λdisLdis + λtopLtop, (3)

where Ltop quantifies the topology discrepancy between the simulated points
Psim
i ∈ R3NL×2 (generated by the N -shaped lines passing through the ith image

plane) and the corresponding detected points in the image, Pdet
i . Meanwhile,



Sensorless Freehand 3D Ultrasound with a Novel Coupling Pad 5

Ldis quantifies the distance discrepancy between corresponding points Psim
i and

Pdet
i . The weights λdis and λtop serve to balance the two components of the loss.

The loss function is further optimized using gradient descent.

Distance Constraints. We define the points on the N -shaped line as:

plinejk = porijk + svjk. (4)

Here, plinejk represents a point on the kth line of the N -shaped line in the jth

layer. porijk ∈ R3 and vjk ∈ R3 denote the line’s origin and direction, with s as a
scalar. The indices j and k range from 1 to NL and 1 to 3, respectively.

The points pplanei on the plane of the ith US image satisfy the following
constraint, where ni and porii respectively represent the normal vector and the
origin of the US image.

ni · (pplanei − porii ) = 0. (5)

The kth line of the N -shaped lines in the jth layer intersects with the ith

plane at the point pplaneijk , which could be obtained by substituting equation (4)

into equation (5) (setting plinejk = pplanei ). Specifically, we transform the pose

gi ∈ G into a rotation matrix Ri ∈ R3×3 and a translation vector ti ∈ R3. Here,
ni = Ri[:, 3] represents the image plane’s normal vector, and porii = ti is the ith

plane’s origin. The intersection point pplaneijk in the 3D world coordinate system,

transformed by the corresponding pose gi, yields the 2D coordinates psimijk ∈ Psim
i

on the image. Considering the corresponding marker point detected in the image,
pdetijk ∈ Pdet

i ,the loss function is formulated as:

Ldis =
1

3NINL

∑
i,j,k

∥psimijk − pdetijk∥2. (6)

Topology Constraints. Due to the image noise, optimization based on the
distance constraints alone is not sufficiently robust for pose estimation, partic-
ularly for rotation. To this end, we incorporate additional topology constraints
using the scoring mechanism proposed by Bai et al. [20]. For the ith frame scan:

Ai[m,n] =

[
1− (dsimmn − ddetmn)

d2thr

]
+

, (7)

where

dsimmn = ∥pm − pn∥, p ∈ Psim
i ; ddetmn = ∥p̂m − p̂n∥, p̂ ∈ Pdet

i . (8)

Here, Ai[m,n] measures the discrepancy between the relative distances of points
within the simulated Psim

i and those detected in Pdet
i in Ii. m, n denotes the

index of points. The parameter dthr dictates the sensitivity to differences in rel-
ative distances. The notation [·]+ = max(·, 0) ensures non-negativity. A score in
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Ai closer to 1 indicates greater similarity between the pairs of relative distances.
The loss function for topology differences can be expressed as:

Ltop =
1

NI

NI∑
i

−log(
1

(3NL)2
1TAi1). (9)

Here, 1 represents a column vector of ones. Reducing Ltop results in the topology
of Psim

i more closely approximating that of Pdet
i .

3 Experiments and Results

In our implementation, the parameters for the N -shaped line are as follows:
NL = 3, W = 25.5, θ = 12.41◦, b2 = [2.5, 4.8, 0]T, b3 = [0, 7.4, 0]T. The opti-
mization parameters are: dthr = 0.6; λdis = 0.1; λtop = 1. The unit of distance
is consistently adopted as millimeters. Optimization was performed using the
Adam optimizer, with a learning rate of 10−2. The generated volume size is
400 × 600 × 800 with a voxel resolution of 0.1 × 0.1 × 0.1 mm. All codes were
implemented in PyTorch and run on an RTX 4090 GPU.

Pose Accuracy Estimation. We performed a simulation for the estimation of
pose accuracy as previous studies [9,10], where the ground truth of image poses
could be obtained. We followed the simulation outlined in [9], and added sim-
ulated N -shaped lines to 3D images. Subsequently, synthetic sequential 2D US
images with makers were generated from 3D images. Specifically, we generated
100 linear scanning sequences with randomly assigned frame counts (ranging
from 80 to 100 frames) and scanning lengths spanning from 65mm to 80mm.
To better simulate real-world scanning conditions, Gaussian noise was added to
the pose of each frame. Furthermore, the positions of marker points were also
perturbed along the horizontal and vertical axes, introducing noise within the
ranges of -0.2 to 0.2 mm and -0.1 to 0.1 mm, respectively. By utilizing the gen-
erated images as input for the proposed method, we could estimate the image
poses and compare them with the ground truth. We evaluated the accuracy of
the estimated poses using metrics proposed by [10], including the Final Drift
Rate (FDR), Average Drift Rate (ADR), Maximum Drift (MD), Sum of Drift
(SD), and Symmetric Hausdorff Distance (HD).

Table 1. The mean(std) FDR and ADR of different methods

Methods FDR(%) ↓ ADR(%) ↓
DCL-Net [3] 35.90 (20.35) 37.04 (13.65)
RecON [9] 25.90 (18.33) 30.36 (13.95)
MoNet [7] 12.75 (9.05) 19.05 (11.46)
Ours 2.74 (2.98) 3.35 (3.24)
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Table 2. The mean (std) results of ablation experiments.

Ldis Ltop FDR(%) ↓ ADR(%) ↓ MD(mm) ↓ SD(mm) ↓ HD(mm) ↓
13.76 (7.51) 15.55(7.16) 10.27(5.52) 463.18(246.47) 10.20(5.55)

✓ 11.16(16.39) 13.34(17.16) 9.51(11.88) 3397.22(553.95) 8.38(12.09)
✓ 7.624(4.12) 14.20(4.90) 6.75(2.60) 295.58(123.55) 6.645(2.62)

✓ ✓ 2.74(2.98) 3.35(3.24) 2.52(2.25) 100.29(103.02) 2.05(2.06)

Comparisons with state-of-the-art (SOTAs): The results in Table 1
show that our method has a 4.7x lower FDR and a 5.7x lower ADR compared
to the SOTA, indicating significant improvements achieved by our method. Pre-
vious deep-learning solutions [3,9,7] mainly rely on the analysis of latent image
patterns between adjacent US images, resulting in cumulative drift error. In our
method, robust spatial information is integrated into the US images through
the use of the coupling pad, closely associating the pose of each US image with
distinct marker patterns. Consequently, the cumulative drift error is reduced.

Ablation study for the loss function: To examine the impact of Ldis and
Ltop in the loss function, we conducted ablation experiments and the results are
summarized in Table 2. When using either Ldis or Ltop as the sole loss function,
the optimization performance was reduced, indicated by an increase in all the
metric values. Table 2 demonstrates the complementary nature of Ldis and Ltop.

Reconstruction Accuracy. To evaluate the accuracy and robustness of our
method in practical US reconstruction, we scanned and reconstructed two types
of phantom: a 9-line phantom and a solid phantom (melamine sponge), as shown
in Fig. 3. A portable linear US probe (Frequency 10MHz, SonoStar Technologies,
China) was used for scanning, and the pixel spacing of the US images is 0.044
mm. Considering the variability of scanning styles in practice, we evaluated three
scanning modes: Linear, Oscillating, and Back-and-forth (see Fig. 4c). The frame
counts of different scans range from 80 to 150.

Reconstruction accuracy for the 9-line phantom: For each scanning
mode, the 9-line phantom underwent 15 scans. Following the reconstruction of
3D US, 9 lines were extracted from the image (denoted as Slines) and registered
to the theoretical lines (denoted as Tlines) using Iterative Closest Point (ICP)
method, as shown in Fig. 4a. Finally, the reconstruction error could be estimated

27 mm

10 mm 15 mm

25 mmSolid Phantom

90 mm

US Probe

9-line Phantom

Coupling 
Pad

1 2

3

4

5

Fig. 3. Reconstruction accuracy experiments. On the left and right are the 9-line phan-
tom and solid phantom, along with the lengths of their key parts.



8 L. Dai et al.

Linear

Oscillating 

Back-and-forth

0.33 mm
(0.20)

0.52 mm
(0.31)

0.28 mm
(0.23)

Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Mean error(std)Mode

W

H

D

Reconstructed volume Extracted points Registered point cloud

Extracted points
Theoretical 
9 lines 

Linear Oscillating Back-and-forth

D
is

ta
nc

e 
Er

ro
r(

m
m

)

Line extraction and registration Metric boxplot(a) (b)

(c)

0.55
0.53
0.51
0.49
0.47
0.45
0.43
0.41
0.39
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constructed volume of the 9-line phantom. b) The reconstruction errors of the 9-line
phantom. c) The reconstruction results and distance error of the solid phantom.

by calculating the mean distance from Slines to the corresponding Tlines. The
evaluation results presented in Fig. 4b show that the mean distance errors for
most scanning modes fall below 0.5 mm.

Reconstruction accuracy for the solid phantom: The solid phantom
was scanned 5 times repeatedly for each scanning mode. For each reconstructed
US volume, 5 lengths marked in Fig. 3 were measured and compared with the
ground truth. The visualization of the volume and the reconstruction error re-
sults are presented in Fig. 4c. It is evident that the reconstructed shape closely
approximates the actual phantom shape, displaying mean reconstruction errors
ranging from 0.2 to 0.5 mm across various scanning modes. Furthermore, the re-
constructed US volumes also depict the probe trajectories, as evidenced by the
volume edges. These findings highlight the robustness of our method, indicating
a small influence on the reconstruction from scanning styles.

The proposed coupling pad solution for sensorless 3D reconstruction presents
several advantages. The low-cost coupling pad can seamlessly adapt to different
linear probes, and it can be easily integrated into the conventional 2D scanning
process, requiring no specialized skills. However, its current design is primarily
for linear probes and may not be suitable for other US probes. Future work will
focus on developing a pad designed for convex probes and conducting more in
vivo experiments to confirm its effectiveness.
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4 Conclusion

In this study, we designed a novel coupling pad for sensorless freehand 3D US
reconstruction. The coupling pad is characterized by its three N -shaped lines,
enabling the acquisition of 3D spatial information without relying on external
tracking devices. Furthermore, we introduced a distance-topology discrepancy
reduction strategy to improve the accuracy of pose estimation. Results from
both simulated and phantom studies indicate that our approach outperforms
SOTAs in terms of performance.
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