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Abstract. Recently, deep learning-based methods have demonstrated
effectiveness in the diagnosing of polyps, which holds clinical significance
in the prevention of colorectal cancer. These methods can be broadly
categorized into two tasks: Polyp Segmentation (PS) and Polyp Detec-
tion (PD). The advantage of PS lies in precise localization, but it is
constrained by the contrast of the polyp area. On the other hand, PD
provides the advantages of global perspective but is susceptible to is-
sues such as false positives or missed detections. Despite substantial
progress in both tasks, there has been limited exploration of integrat-
ing these two tasks. To address this problem, we introduce QueryNet, a
unified framework for accurate polyp segmentation and detection. Spe-
cially, our QueryNet is constructed on top of Mask2Former, a query-
based segmentation model. It conceptualizes object queries as cluster
centers and constructs a detection branch to handle both tasks. Exten-
sive quantitative and qualitative experiments on five public benchmarks
verify that this unified framework effectively mitigates the task-specific
limitations, thereby enhancing the overall performance. Furthermore,
QueryNet achieves comparable performance against state-of-the-art PS
and PD methods. Code is available at Github.
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1 Introduction

Early diagnosis of polyps is of great clinical significance in preventing colorectal
cancer. However, manual diagnosis entails considerable costs and is susceptible
to challenges such as missed detections and false positives, affecting the examina-
tions and treatments. Deep learning-based methods offer promise in overcoming
these limitations, thereby enhancing the precision and efficiency of polyp treat-
ment. Currently, these methods can been divided into two distinct tasks: Polyp
Segmentation (PS) and Polyp Detection (PD). Specifically, PS affords pixel-
level localization and detailed anatomical information, facilitating preoperative
decision-making. PD aims to identify and recognize the presence of polyps, serv-
ing as a convenient tool for promptly assessing potential abnormalities with its
efficiency and low computational demands.

https://github.com/JiaxingChai/Query_Net
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Fig. 1. The visualization results of different PS and PD methods on hard samples.
Blue part shows the segmentation results. Green part shows the detection results.

Although significant progress has been achieved in both PS [8,12,18,2,14] and
PD [19,10,20,3], these methods still exhibit frustrating task-specific limitations.
Specifically, as shown in Fig. 1, in the scenarios with low contrast of polyp region
(2nd row), PS models tend to misclassify surrounding mucosa as polyps, whereas
PD models can still accurately delineate the boundaries of the polyp. Besides, in
cases where the polyp morphology is excessively large (1st row), PD models may
generate incomplete or duplicated detections, while PS could successfully identify
the entire polyp. Therefore, we propose a hypothesis: integrating PS and PD into
a unified framework could leverage the advantages of both approaches, ultimately
eliminating task-specific limitations and enhancing overall performance.

In this paper, we propose QueryNet, a unified framework aimed at harness-
ing the full potential of coupling PS and PD tasks. Specifically, our QueryNet
is built upon the Mask2Former [6], which is a query-based segmentation model.
Object queries could be treated as instance samples with multiple spatial infor-
mation. Therefore, it could locate and retrieve targets in different types of fea-
tures. Exploiting this characteristic, we constructed the detection branch to allow
segmentation to benefit from exploring more intricate contextual relationships.
Additionally, to enhance the support of segmentation for detection, we introduce
Mask-refinement Transformer Decoder by improving the feature representation
from segmentation-related transformer decoder. Extensive experiments validate
the mutual benefits between these two tasks, affirming the feasibility of a unified
framework. To summarize, our contributions are three-fold:

1. To the best of our knowledge, our QueryNet is the first unified framework for
accurate polyp segmentation and detection. Our work explores the feasibility
of a unified model in the field of polyps.

2. We introduced Mask-refinement Transformer Decoder, extending the struc-
ture to enhance the utilization of segmentation-related features for detection,
thereby enabling segmentation to support detection.

3. Extensive experiments indicate that the unified framework can inherit the
advantages of PS and PD, thereby alleviating the limitations of each single
task. Besides, QueryNet achieves comparable results against state of the art
on five benchmark datasets.



QueryNet 3

× L

Mask-refinement Transformer Decoder

F1

F4

F2

Backbone

Pixel Decoder

Input

Q

F3
Dot - product

Q        Object queries

Seg.

Det.

SE

R
F4

C
A SA FF
N

R Refinement

SE       Squeeze & excitation

Q

G

Det.

Seg.

Detection Branch

Segmentation Branch

G Generation

m

Fig. 2. Overview of the proposed QueryNet.

2 Method

As depicted in Fig. 2, our QueryNet comprises five components: backbone, pixel
decoder, Mask-refinement Transformer Decoder, segmentation branch, and de-
tection branch. We will begin by presenting the overall feature flow of the net-
work. Then, each component will be elaborated as follows.

2.1 Overall Architecture

Firstly, the input image, denoted as “Input", is processed by the backbone to
extract multi-scale features. These backbone features are subsequently passed to
the pixel decoder, resulting in decoded features (F1, F2, F3, F4) with uniform di-
mensions. The pivotal step involves updating the object queries Q, accomplished
by the Mask-refinement Transformer Decoder (MrTD). MrTD takes both the
backbone and pixel decoder features as inputs, and detailed information about
MrTD is provided in Sec. 2.2. The final object queries are then fed into the
detection head to obtain detection results. By multiplying these object queries
with the F4 features, masks are generated. These masks are further forwarded
to the segmentation head, resulting in the final segmentation results.

2.2 Mask-refinement Transformer Decoder

As depicted in Fig. 2, the original transformer decoder consists of three main op-
erations: Cross Attention (CA), Self-Attention (SA), and Feed-Forward Network
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(FFN). Object queries effectively assimilate valuable information from pixel de-
coder features (F1, F2, F3) through CA. We perform these operations L times
in order to fully exploit the information embedded within these pixel decoder
features.

The original transformer decoder accelerates the convergence process by em-
ploying attention mask in CA. However, the original attention mask does not
suit detection task. Because attention mask are obtained from scratch by dot-
producting object queries and the pixel decoder feature F4 in different decoder
layers. This would cause discontinuous changes in the attention mask within the
transformer decoder, consequently leading to the discontinuities of the receptive
field in different transformer decoder.

To this end, we propose the Mask-refinement Transformer Decoder (MrTD)
to improve the way attention masks are generated. The details of MrTD are
shown in Blue Box of Fig. 2. Specifically, compared to the original transformer
decoder, MrTD has two additional key components.: Generation G and Re-
finement R. In G, we concatenate the multi-scale encoder features, pass them
through a Squeeze-and-Excitation (SE) layer [9], and finally obtain the refine-
ment mask m through a convolutional layer. Subsequently, R utilizes m to refine
the original attention mask by a logical OR operation.

MrTD could effectively addresses the issue of discontinuity in receptive field
changes by employing the refined attention mask. The continuous and complete
receptive field supports the detection to capture more comprehensive contextual
information in transformer decoder, so as to better utilize segmentation-related
features. Besides, this task-interaction module could facilitate intersection be-
tween segmentation and detection, thereby enabling features well perceive multi-
task supervision in joint training.

2.3 Segmentation Branch

As suggested in [7], pixels are classified into different clusters. Each query could
be conceptualized as a cluster center for an instance. The product of Q ∈ RN×D

and F4 ∈ RD×H4×W4 denotes the similarity between each pixel and the cluster
centers. Then, we apply softmax activation softmax to obtain the mask predic-
tion M ,

M = softmax(QF4) ∈ RN×H4×W4 , (1)

here, N represents the number of object queries, D represents the dimensionality
of each query, and H4 and W4 denote the height and width of F4, respectively.
Simultaneously, the object queries go through a Multi-Layer Perception MLP to
predict the class probabilities for each query. Multiplying the class probabilities
with the M yields the final prediction results Pm. This process can be formulated
as follows:

Pm = MLP (Q)TM ∈ Rk×H×W , (2)

where H and W represent the height and width of the original image, k represents
the number of classes. We omit the upsampling operation in our representation
for simplicity.
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2.4 Detection Branch

As discussed in Sec. 2.3, object queries could be conceptualized as cluster cen-
ters, which encode spatial coordinate information related to different instances.
Therefore, we could extract this spatial information from object queries by using
a MLP. This process can be formulated as follows:

Pb = σ(MLP (Q)) ∈ RN×4, (3)

here, Pb represents the prediction bounding boxes. We apply a sigmoid function
σ to normalize all coordinates, in order to avoid the troubles caused by sampling
operations.

In the detection branch, we are able to compute the coordinate loss associ-
ated with object queries. This detection-related supervisory information is then
disseminated to each feature during the gradient update process. In this way, the
segmentation could perceive the detection-related signal from these features dur-
ing forward propagation. Consequently, segmentation is able to reap the advan-
tages of detection, thereby effectively overcoming the task-specific limitations.

2.5 Loss Function

Our overall losses consist of two parts: segmentation loss and detection loss.
For segmentation, we adopt dice loss and cross entropy loss. For detection, we
adopt giou Loss and l1 Loss. Given Pm and Pb, the overall loss function can be
formulated as:

Lo = Ld(Pm, Gm) + Lce(Pm, Gm)︸ ︷︷ ︸
Segmentation

+Lg(Pb, Gb) + Ll(Pb, Gb)︸ ︷︷ ︸
Detection

, (4)

where Ld, Lce, Lg, Ll represent dice loss, cross entropy loss, GIoU loss and L1 loss,
respectively. Gm represents the ground truth masks. Gb represents the ground
truth bounding boxes.

3 Experiments

3.1 Datasets and Metrics

Datasets. We evaluate the performance of our QueryNet on five benchmark
polyp datasets: CVC-ClinicDB [1], Kvasir [11], CVC-ColonDB [16], ETIS [15],
and CVC-300 [17]. We follow the same setting as in [8]: 900 images from Kvasir
and 550 images from the CVC-ClinicDB are used for training, the remaining
images are used to test the learning ability and the other three datasets are
used to test the generalization ability. Metrics. We use mainstream metrics to
measure segmentation and detection tasks. Specifically, for segmentation, we use
Dice and mean IoU; For detection, we use Precision (Pre) and Recall (Re).
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Table 1. Quantitative results on the seen datasets compared to previous state-of-the-
art methods. Seg. means segmentation methods. Det. means detection methods. The
best and second best results are bolded in red and blue, respectively.

CVC-ClinicDB Kvasir-SEG
Type Methods Pub.

Dice IoU Pre. Re. Dice IoU Pre. Re.

Seg.

PraNet MICCAI’20 89.40 83.49 - - 89.14 82.91 - -
UACANet ACM MM’21 93.63 88.87 - - 91.38 86.13 - -
SSFormer-L MICCAI’22 90.65 85.56 - - 92.19 87.08 - -
Polyp-PVT CAAI’23 93.38 88.37 - - 92.23 86.91 - -
PVT-CASCADE WACV’23 93.57 88.89 - - 92.22 87.24 - -

Det.

DETR ECCV’20 - - 95.71 98.52 - - 91.07 84.29
Deformable DETR ICLR’21 - - 95.52 94.11 - - 90.19 76.03
DAB-DETR CVPR’22 - - 94.02 92.64 - - 90.65 80.17
DINO ICLR’23 - - 95.45 92.65 - - 90.20 76.03
QueryNet(Ours) - 94.21 89.40 97.05 97.05 93.28 88.35 91.74 82.64

Table 2. Quantitative results on the unseen datasets compared to previous state-of-
the-art methods. Seg. means segmentation methods. Det. means detection methods.
The best and second best results are bolded in red and blue, respectively.

CVC-ColonDB ETIS CVC-300
Type Methods

Dice IoU Pre. Re. Dice IoU Pre. Re. Dice IoU Pre. Re.

Seg.

PraNet 74.70 66.08 - - 66.55 58.14 - - 87.50 79.74 - -
UACANet 75.93 68.67 - - 77.01 69.04 - - 91.27 85.07 - -
SSFormer-L 81.29 73.52 - - 80.11 72.80 - - 90.35 83.79 - -
Polyp-PVT 81.32 72.92 - - 78.13 69.69 - - 89.79 82.82 - -
PVT-CASCADE 81.60 73.47 - - 78.59 70.83 - - 89.15 82.25 - -

Det.

DETR - - 76.37 80.79 - - 74.67 75.33 - - 90.16 91.67
Deformable DETR - - 79.90 82.63 - - 72.64 70.19 - - 90.46 91.77
DAB-DETR - - 77.55 78.16 - - 73.63 71.15 - - 88.52 90.00
DINO - - 77.54 78.16 - - 71.35 68.27 - - 91.67 91.67
QueryNet(Ours) 82.78 75.93 83.51 85.26 81.89 73.99 74.88 77.40 92.05 85.97 91.80 93.33

3.2 Implementations Details

Our model is implemented based on the PyTorch framework and trained on a
single NVIDIA RTX 3090 GPU. We resize the input images to the size 352×352.
Random horizontal flipping and random rotation are used to avoid overfitting.
The AdamW optimizer is used for optimization with an initial learning rate
of 1e-4. The whole network takes approximately 5 hours to converge over 150
epochs with a batch size of 8.

3.3 Results

We compare our QueryNet with several advanced segmentation and detection
methods. Segmentation: PraNet [8], UACANet [12], SSFormer [18], Polyp-
PVT [2] and PVT-CASCADE [14]. Detection: DETR [4], Deformable DETR [22],
DAB-DETR [13] and DINO [21]. We reproduce these segmentation models by
using their released source codes, while these detection models are reproduced
by using the MMDetection Framework [5]. All models are trained by five times
on the same device, and the averaged results are reported for comparison.
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Fig. 3. Qualitative results of different methods.

Quantitative Analysis: Tab. 1 shows the intra-domain comparative re-
sults, while Tab. 2 reports the inter-domain results. It can be seen that our
QueryNet exhibits robust learning and generalization abilities across all datasets
of both segmentation and detection tasks. In particular, our QueryNet achieves
a predominant performance on the detection task on the challenging CVC-
ColonDB dataset. Compared to the second best method (Deformable DETR),
our QueryNet achieves an significant improvement of 3.61% and 2.63% in terms
of Precision and Recall. This indicates that segmentation could bring strong
generalization ability for the detection.

Qualitative Analysis: Fig. 3 shows the visualization results of different
models. It can be seen that our method has better performance for challenging
polyps. The first row shows that the detection model misidentifies pseudo-polyps
as polyps, while our model could achieve precise detection. This proves that the
detection part could benefit from the segmentation. The second row displays
that the segmentation model incorrectly segments the background due to the
complex texture of the polyp. However, our model could benefit from the de-
tection to make the segmentation results more precise and complete. Besides,
the unified framework also possesses enhanced feature representation capabili-
ties compared to single specialized model. For example, the third row presents
a more challenging sample where both models fail, while our model could still
accurately recognize the polyp. Undeniably, our model also exhibits flaws. As
shown in the fourth row, when the target is nearly invisible, our model may oc-
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Table 3. Ablation study of QueryNet on CVC-ClinicDB and CVC-ColonDB datasets.
Results with underlines are computed from prediction masks. "Seg." indicates perform-
ing only segmentation task, while "Det." indicates performing only the detection task.
MrTD stands for Mask-refinement Transformer Decoder.

Settings CVC-ClinicDB (seen) CVC-ColonDB (unseen)No. Seg. Det. MrTD Dice IoU Pre. Re. Dice IoU Pre. Re.
1 ✓ 91.91 87.06 92.53 95.00 78.04 71.59 75.85 82.23
2 ✓ - - 90.43 92.12 - - 71.40 76.68
3 ✓ ✓ 93.10 88.10 93.12 94.11 80.23 72.79 82.32 81.07
4 ✓ ✓ 93.06 87.84 95.65 97.06 79.72 72.71 81.73 82.33
5 ✓ ✓ - - 95.59 95.59 - - 82.63 83.66
6 ✓ ✓ ✓ 94.21 89.40 97.05 97.05 82.78 75.93 83.51 85.26

casionally misidentify unrelated regions as polyps. This suggests that our model
does inherit certain limitations from PS and PD in perceiving small polyps.

3.4 Ablation Study

In this section, we conduct ablation experiments of our QueryNet on CVC-
CliniDB (seen) and CVC-ColonDB (unseen) datasets. We take the Mask2Former
(only Seg.) as the baseline. And we haven’t made any parameter changes for fair-
ness. The ablation results are shown in Tab. 3. We can observe that: (1) Unified
framework could benefit from joint segmentation and detection. On the seen
dataset, Dice in No.3 increased by 1.19% compared to No.1, Precision increased
by 2.69% compared to No.2; No.6 shows a 1.15% increase in Dice compared to
No.4, and Precision increased by 1.46% compared to No.5; (2) Segmentation
could provide strong generalization capabilities for detection. The Precision in
No.3 exhibits a great improvement compared to No.2, achieving a remarkable
increase of 10.92% on unseen dataset. (3) MrTD could effectively assist detec-
tion to utilize segmentation-related features. Compared to No.2, the Precision
in No.5 significantly improves with a gain of 5.16% and 11.23% on seen and
unseen datasets, respectively. (4) MrTD could enable the unified framework to
well utilize multi-task supervision in joint training. All the indicators in No.6
have increased compared No.3, especially the detection part.

4 Conclusion

In this paper, we propose a unified framework for accurate polyp segmentation
and detection, which could inherit the advantages of PS and PD to mitigate
the task-specific limitations, thereby enhance the overall performance. Specifi-
cally, we exploit the characteristics of object queries and construct the detection
branch, allowing the model to support both tasks. Additionally, we introduced
MrTD to enable the segmentation to better support the detection. Extensive
experiments validated the feasible of the unified framework, showcasing its po-
tential in the field of polyps. Besides, our QueryNet also achieves comparable
results on five benchmark datasets. We hope that our work could provide a fresh
perspective for the community.
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