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Abstract. Automatic segmentation of diabetic retinopathy (DR) le-
sions in retinal images has a translational impact. However, collecting
pixel-level annotations for supervised learning is labor-intensive. Thus,
semi-supervised learning (SSL) methods tapping into the abundance of
unlabeled images have been widely accepted. Still, a blind application of
SSL is problematic due to the confirmation bias stemming from unreli-
able pseudo masks and class imbalance. To address these concerns, we
propose a Rival Networks Collaboration with Saliency Map (RiCo) for
multi-lesion segmentation in retinal images for DR. From two compet-
ing networks, we declare a victor network based on Dice coefficient onto
which the defeated network is aligned when exploiting unlabeled images.
Recognizing that this competition might overlook small lesions, we equip
rival networks with distinct weight systems for imbalanced and under-
performing classes. The victor network dynamically guides the defeated
network by complementing its weaknesses and mimicking the victor’s
strengths. This process fosters effective collaborative growth through
meaningful knowledge exchange. Furthermore, we incorporate a saliency
map, highlighting color-striking structures, into consistency loss to signif-
icantly enhance alignment in structural and critical areas for retinal im-
ages. This approach improves reliability and stability by minimizing the
influence of unreliable areas of the pseudo mask. A comprehensive com-
parison with state-of-the-art SSL methods demonstrates our method’s
superior performance on two datasets (IDRiD and e-ophtha). Our code
is available at https://github.com/eunjinkim97/SSL_DRlesion.

Keywords: Semi-supervised learning · Retinal image segmentation ·
Mutual learning.

1 Introduction

Diabetic Retinopathy (DR) often leads to vision loss. Thus, segmentation of DR-
related lesions, such as microaneurysm (MA), hemorrhage (HE), hard exudate
(EX), and soft exudate (SE), can assist ophthalmologists in efficient diagnosis
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Fig. 1. Characteristics of a retinal image and DR-related lesions for four classes (MA,
HE, EX, and SE) in red, green, blue, and pink, respectively. (b) Saliency map in skyblue
on the retinal image. (c) Distribution of lesions in pixels and blobs. (d) Differences in
performances between different architectures according to classes. (e) High Dice score
and correlation between saliency maps and lesions.

or follow-up observations [15,21]. However, manual segmentation of heteroge-
neous scattered lesions is laborious, posing a challenge for automated methods
that rely on large labeled datasets for training. To address this, semi-supervised
learning (SSL) has been widely researched to utilize abundant unlabeled data
effectively. Recently, many SSL approaches based on consistency regularization
have garnered considerable interest, including adaptations of the Mean Teacher
(MT) and the Cross Pseudo Supervision (CPS) [17,2].

The MT-based approach consists of a student model and teacher model up-
dated by an exponential moving average from the student model, maintaining
the consistency of the models’ predictions from perturbed input images [3], es-
pecially in lower uncertainty regions [8,22]. However, these methods may un-
derperform due to the risk of confirmation bias during training by accumulating
errors from incorrect pseudo masks [1]. Besides that, many SSL studies, including
the CPS, suggested co-training and model-level perturbations inducing invariant
predictions [11,10]. While they can reduce confirmation bias with mutual learn-
ing, they still face obstacles with training bias towards the majority and easier
classes [7,23].

Some SSL research on retinal images has suggested multi-task frameworks,
investigating the relationship between the DR grade and lesions [18,24]. However,
they did not fully address the heterogeneous distributions, such as imbalanced
and unique morphological traits. Fig. 1c reveals general trends in pixel and blob
count across classes, with HE lesions showing large areas but few blobs and MA
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lesions presenting small areas with many blobs. Despite these patterns within
each class, there are a variety of shapes and sizes as represented in Fig. 1a.

To confront the described issues, we propose Rival Networks Collaboration
with Saliency Map, called RiCo, for effective multi-lesion semi-supervised seg-
mentation. First, we select a victor network with a higher Dice score between
two competing networks to obtain reliable pseudo masks. However, this may
overlook small lesions due to the inherent bias of the Dice metric for larger
lesions. Thus, we adopt a bifurcated rival network strategy: one for handling
bias toward easy-to-learn classes (i.e., difficulty-sensitive) and another for
class imbalance (i.e., imbalance-sensitive) with distinct network structures.
This mechanism not only manages the biases but also captures diverse repre-
sentations across various class distributions, as shown in Fig. 1d. Second, we
introduce a victor-guided weighting strategy where the victor network directs
the defeated network effectively to lessen the weakness of the defeated network
when leveraging unlabeled images. If the victor network is the difficulty-sensitive
one, we update the defeated network (i.e., imbalance-sensitive) weight with
information derived from the difficulty-sensitive network. If the victor network
is the imbalance-sensitive one, we update the defeated network (i.e., difficulty-
sensitive) similarly. This approach prevents one-sided dominance and facilitates
well-rounded mutual learning. Third, we employ a saliency map known to have
high correlations with DR-lesions, as illustrated in Fig. 1b and e. We encour-
age the defeated network to match the victor’s pseudo masks in crucial areas
highlighted by the saliency map to minimize errors in less reliable regions of the
pseudo masks. It extends the concept of consistency for the low uncertainty area,
exploring the lesion-related feature space in the pseudo masks. In conclusion, our
method ensures balanced and superior performance across multi-classes by avoid-
ing biases compared to leading SSL approaches on two datasets (IDRiD [13] and
e-phtha [4]).

2 Preliminary

Recently, Wang et al. [19] suggested a dual-weight system for training difficulty-
aware and distribution-aware networks. We briefly review them here since we
build on their definition. The difficulty-aware weight is defined as W diff

k =
wγk,t

(dk,t)
α. Here, wγk,t

represents cumulative 1 − γk,t, where γk,t represents
the Dice coefficient for k class at iteration t using the number accumulation
iteration τ . The difficulty metric is defined as dk,t =

duk,t+ϵ
dlk,t+ϵ

with duk,t ≈ ln
γt,k
γt−1,k

for negative changes γt,k − γt−1,k ≤ 0, dlk,t ≈ ln
γt,k
γt−1,k

for positive changes
γt,k − γt−1,k > 0, and ϵ for smoothing factor. The distribution-aware weight is
defined as W dist

k = log(Rk)

max{log(Ri)}K
i=1

, where Rk =
max{Nk}K

i=1

Nk
and Nk represents

the number of pixels representing k class. They are updated iteratively using an
exponential moving average with a factor of β.
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Fig. 2. Schematic of RiCo: Rival networks, fdiff and fdist, possess distinct weights
Wdiff and Wdist for difficult and imbalanced with a correction module. The victor
network determined by lower LDice generates PV for Lcons with a saliency map for
critical areas. If fdist wins, fdiff is influenced by Weasy and if fdiff wins, fdist is
updated by Wmin. An asterisk (*) as a superscript to f denotes a freezing network.
The inference process is the mean of outputs of fdiff and fdist.

3 Method

Let B = X ∪ U be a batch of the training set, where X = {(xi, yi)|yi ∈
[0, 1]W×H×K}NX

i=1 is the NX labeled set comprising pairs of images and masks for
K classes and U = {xi}NU

i=1 is the NU unlabeled set with only images. For SSL
tasks, the training loss is Ltotal = Lsup+λU ·LU , combining supervised loss Lsup
and unsupervised loss LU weighted by λU . Fig. 2 presents our strategy called
RiCo.

3.1 Mutual Learning of Bifurcated Rival Networks

To explore the diverse representation of heterogeneous target distribution, we
adopt a co-training framework from [20] with two networks of different struc-
tures, denoted as fdiff and fdist: UNet [14] and UNet++ [25], respectively. They
are independently forced to predict segmentation masks using Lcombo which com-
bines binary cross-entropy and Dice loss for X [16]. They compete to select a
victor network based on the lower Dice loss LDice, which then produces a pseudo
mask P kV for U . The defeated network learns to align with this P kV through con-
sistency loss Lcons.
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This competition leads to size bias due to the inherent property of the Dice
metric overlooking small and challenging classes. To tackle these issues of class
imbalance and difficulty, we adopt the dual-weight system from [19], which [20]
did not incorporate. Wdiff ∈ RK is assigned for the difficulty weight fdiff , di-
minishing weights to well-segmented classes while intensifying weights for hard
classes. Wdist ∈ RK for fdist s iteratively tailored based on the class distribution
of the predicted mask for X . Thus, fdiff becomes the difficulty-sensitive net-
work and fdist is the imbalance-sensitive network. These rival networks with
W k
diff and W k

dist are optimized using the following objective functions.

Lseg =
1

NXK

∑
xi∈X

K∑
k=1

[W k
diffLcombo(fkdiff (xi), yki ) +W k

distLcombo(fkdist(xi), yki )].

(1)
We implemented a correction module to utilize a discrepancy map Dk in [20]

to improve mutual learning. We generate the pseudo masks from the predictions
of two networks, P kdiff and P kdist, by using a sharpening process with a temper-
ature factor T . As follows in [20], each network is optimized with the correction
loss Lcor using a discrepancy map Dk obtained by applying an exclusive OR
operation on their pseudo masks in X , as described below:

Lfcor =
1

NXK

∑
xi∈X

K∑
k=1

∑
p,q

Dk
p,q ·

[
(fk(xp,q)− ykp,q)

2
]∑

p,qD
k
p,q

, (2)

where indices p and q correspond to the x and y coordinates within the spatial
dimensions. The supervised loss is defined as Lsup = Lseg + λcorLcor.

3.2 Victor-Guided Weighting Strategy for Consistency

To complement the weakness of the defeated network and leverage the strength
of the victor network, we introduce a new victor-guided weight W k

V , which can
be either W k

easy or W k
min. Reversing the concept of the difficulty metric and

weight W k
diff , we propose an easiness metric sk,t =

dlk,t+ϵ
duk,t+ϵ

and a corresponding
easiness weight W k

easy = vψk,t
(sk,t)

α. Here, vψk,t
represents the cumulative ψk,t

at tth iteration, where we define ψ as Dice score. sk,t finds out which classes
the victor learns easily and vψk,t

informs which classes the victor has excelled in
until tth iteration. Therefore, W k

easy spotlights the classes with higher Dice scores
and a broader improvement range, encouraging the defeated network to resemble
the victor’s positive points by focusing on corresponding superior classes of P kV ,
which is the point [19] did not consider.

If fdist (imbalance-sensitive) wins, the existing weights of fdiff (difficulty-
sensitive) could be insufficient; thus, we revise the weights of fdiff to focus on
easy classes specified by W k

easy. That is, W k
V is transformed into W k

easy for the
defeated one to be easy-sensitive, which complements the one-sided dominance
of W k

diff and evokes counterbalancing effects by leveraging the victor’s strength.
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If fdiff (difficulty-sensitive) wins, the existing weights of fdist (imbalance-
sensitive) could be insufficient; thus, we revise the weights of fdist to focus on
underrepresented classes predicted from fdiff . Here, W k

V switches to W k
min for

the defeated one to be minority-sensitive, which emphasizes classes identified
by fdiff as small classes. This step encourages fdist to concentrate on reliable
pseudo masks, enhancing W k

dist in a similar stream. These updated weights are
used in the unsupervised path through Lcons. Our victor-guided dual-weight
strategy for U constructs a cooperative competition to complement each other by
reasonably leveraging unlabeled images. This strategy applies to the consistency
loss Lcons and is described as follows:

W k
V =

{
W k
easy(LDice(fdist(xl), y)), if LDice(fdiff (xl), y) ≥ LDice(fdist(xl), y)

W k
min(P

u
diff ), if LDice(fdiff (xl), y) < LDice(fdist(xl), y)

(3)
, where LDice denotes the average of Ldice over the classes K.

3.3 Saliency Map-based Consistency Loss

We introduce a binarized saliency map S(xu) that captures color-striking fea-
tures by employing a fine-grained static saliency method [12] and applying a
threshold value th for binarization. S(xu) enables the defeated network fD to
pay attention to structural and eye-catching areas such as vessels, optic disc, and
lesions when aligning with the victor’s pseudo mask P kV . By incorporating S(xu)
into Lcons, we boost consistency in crucial regions of the unlabeled images.

This approach is based on an insight that SSL methods with uncertainty
ensure consistency in low-uncertainty areas derived from perturbed images [22].
It represents the significance of stable and reliable regions to avoid the wrong
pseudo-mask regions. Expanding on this concept, we posit that S(xu) func-
tions similarly to an uncertainty map, covering essential target areas and prior
knowledge of retinal images. This procedure aims to minimize the cumulative
confirmation bias and inherently explore the relationships among various lesion
classes and structural features. Lcons becomes LU and is calculated as pixel-wise
mean squared error using S(xu) as follows:

Lcons =
1

NUK

∑
xi∈XU

K∑
k=1

∑
p,q

S(xp,q) ·
[
W k
V (P

k
Vp,q

− fkD(xp,q))
2
]

∑
p,q S(xp,q)

. (4)

4 Experiments

Dataset and Implementation details Our proposed method, RiCo, is evalu-
ated on two datasets, IDRiD [13] and e-ophtha [4] for multi-lesion segmentation.
The IDRiD encompasses pixel-wise annotations for four types of DR lesions: MA,
HE, EX, and SE. It is structured into a training set and a testing set, detailed
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as follows: 54 and 27 pairs for MA and EX, 53 and 27 for HE, and 26 and 14
for SE, respectively. Note that the datasets have a class imbalance distribution,
with less than 1% of lesions present in an image on average (see Fig. 1). We
used the e-ophtha dataset comprising 47 images with Exudates, including EX
and SE, and 148 images with MA. Following prior studies [5,6], we selected 21
images that exhibited both types of lesions (MA and Exudates) and split 11 for
training and 10 for testing.

We implemented recent five SSL methods, UA-MT [22], CPS [2], CLD [9],
DHC [19], and MCF [20] on our two datasets. We evaluated their performance
across various labeled dataset configurations: 2%, 5%, 10%, and 20% for the
IDRiD dataset and 10%, 20%, and 30% for the e-ophtha dataset. We empiri-
cally set λU as 0.1, λcor as 0.5, α at 1

5 , and the temperature factor T as 0.1
following [19,20]. To ensure fairness and showcase the efficacy of our approach,
we conducted each experiment with three random seeds presenting the average
and standard deviation of the results (i.e., average±std). We assessed the per-
formances using the area under the precision-recall curve (PRC) and the dice
score coefficient (DSC). For details on training, please refer to the Supplementary
material.

Table 1 shows the results from the IDRiD dataset to validate RiCo’s su-
perior performance across multiple lesion classes with respect to four different

Table 1. Average DSC and PRC for four classes at 2%, 5%, 10%, and 20% labeled
dataset proportions in the IDRiD dataset across three random seeds. Bold denotes the
highest scores and underscores mark the second highest.

Prop. 2% (only 1 image) 5% (2 images) 10% (4 images) 20% (8 images)
Metric Avg. DSC Avg. PRC Avg. DSC Avg. PRC Avg. DSC Avg. PRC Avg. DSC Avg. PRC
Unet 24.89±13.90 18.90±11.36 37.05±9.35 29.55±8.83 50.60±5.46 42.85±6.92 54.05±6.06 48.78±6.67

Unet++ 27.44±15.89 20.36±13.58 37.10±11.57 29.65±11.68 51.55±3.69 44.02±4.31 55.24±2.31 49.94±3.40
UA-MT 34.08±10.40 24.64±10.56 38.64±13.00 32.57±14.58 55.83±5.00 50.29±6.79 60.99±3.56 58.34±4.64

CPS 34.72±9.50 26.90±8.86 42.37±10.05 35.07±12.48 58.36±4.60 54.94±7.07 62.87±1.54 61.97±2.63
CLD 32.78±8.94 25.33±9.65 43.04±9.28 35.28±10.99 57.50±5.06 54.48±7.27 62.61±2.26 61.99±3.51
MCF 35.12±10.44 28.04±10.19 44.44±8.75 38.72±10.77 57.88±3.49 55.54±4.89 63.49±3.23 63.02±3.79
DHC 35.56±12.6 27.82±12.39 42.75±9.8 36.01±11.72 57.78±4.92 54.37±6.51 62.77±2.13 61.38±2.36
Ours 38.04±14.66 33.51±12.6 45.18±9.45 39.12±11.22 60.03±2.7 57.67±3.6 63.91±2.88 63.66±3.41

Table 2. Average DSC and PRC for MA and Exudates classes at 10%, 20%, and 30%
labeled dataset proportions in the e-ophtha dataset across three random seeds.

Prop. 10% (only 1 image) 20% (2 images) 30% (3 images)
Metric Avg. DSC Avg. PRC Avg. DSC Avg. PRC Avg. DSC Avg. PRC
Unet 27.68±0.38 19.05±0.67 37.76±7.36 28.53±8.21 42.60±7.15 34.89±9.83

Unet++ 27.38±1.88 19.60±3.59 39.49±7.16 29.98±8.44 43.42±5.57 37.10±8.02
UA-MT 36.58±0.01 27.90±0.97 43.82±4.18 33.60±4.69 45.67±7.48 38.03±10.62

CPS 35.35±1.46 27.68±0.02 43.29±4.05 35.03±5.35 45.94±9.83 38.48±13.42
CLD 32.72±0.43 24.28±0.56 40.41±6.65 31.23±8.32 40.95±11.91 34.24±14.66
MCF 39.59±4.77 33.92±6.44 44.36±3.57 40.08±6.38 46.64±5.98 43.56±9.83
DHC 35.74±1.16 28.27±2.79 44.24±6.04 36.41±7.18 44.78±8.29 38.10±10.92
Ours 40.08±4.22 34.66±6.15 44.74±4.68 40.48±8.24 47.99±6.14 44.75±10.62
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Fig. 3. Qualitative results at 5% labeled IDRiD dataset. The second-row zooms in on
the first row’s images, and the fourth-row zooms in on the third row’s images. Gray
arrows highlight subtle or challenging lesions.

proportions of labeled datasets. The average DSC and PRC of fully supervised
learning are 62.93±1.80 and 60.56±2.7 for Unet and 62.93±3.13 and 60.2±4.5 for
Unet++, respectively. Qualitative comparisons in Fig. 3 highlight RiCo’s profi-
ciency in segmenting small and complex lesions. Table 2 represents the promi-
nent results of ours in the e-ophtha dataset. The average DSC and PRC of fully
supervised learning on e-ophtha are 50.03±10.31 and 43.36±13.2 for Unet and
51.78±6.9 and 44.25±9.95 for Unet++, respectively. Additional results per class
are available in the Supplementary material.

To show the incremental impact of various components of our method, we
performed an ablation study in Table 3. Here, the first row, the baseline method,
represents the average results of predictions from two differently structured su-
pervised networks. Using each component separately improved performance, but
combining them resulted in complementary and balanced advances.

Table 3. Ablation Study on a 5% labeled dataset: “BR” for bifurcated rival networks
with distinct weights, “VW” for the victor-guided weighting strategy, and “SC” for
saliency-based consistency loss.

BR VW SC Avg. DSC Avg. PRC MA HE EX SE
40.74±8.61 33.79±9.28 27.84±6.94 35.71±0.55 54.16±8.61 17.46±21.01
44.56±8.57 37.22±10.79 31.99±2.46 40.00±0.13 52.94±17.29 23.96±23.29
45.20±9.11 38.14±11.47 32.22±2.93 42.14±3.29 55.05±16.92 23.13±22.75
44.20±9.02 36.61±11.87 30.74±3.74 39.36±1.89 53.32±18.72 23.02±23.12
43.36±7.60 38.47±8.78 32.55±0.63 47.47±2.67 52.84±9.66 21.02±22.17
45.18±9.45 39.12±11.22 32.49±4.01 43.25±2.81 55.41±15.48 25.31±22.56
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5 Conclusion

We propose novel saliency map-enhanced rival networks with victor guidance to
overcome confirmation and data biases simultaneously for multi-lesion segmen-
tation with limited labeled data. We design a constructive competition where the
defeated network learns the victor’s strengths, facilitating collaboration between
two distinct rival networks.

Acknowledgments. This study was supported by National Research Foundation
(NRF-2020M3E5D2A01084892), Institute for Basic Science (IBS-R015-D1), AI Gradu-
ate School Support Program (2019-0-00421), ICT Creative Consilience program (IITP-
2024-2020-0-01821), and the Artificial Intelligence Innovation Hub program (RS-2021-
II212068).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-
labeling and confirmation bias in deep semi-supervised learning. In: 2020 Inter-
national Joint Conference on Neural Networks (IJCNN). pp. 1–8. IEEE (2020)

2. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation
with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2613–2622 (2021)

3. Cui, W., Liu, Y., Li, Y., Guo, M., Li, Y., Li, X., Wang, T., Zeng, X., Ye, C.: Semi-
supervised brain lesion segmentation with an adapted mean teacher –model. In:
Information Processing in Medical Imaging: 26th International Conference, IPMI
2019, Hong Kong, China, June 2–7, 2019, Proceedings 26. pp. 554–565. Springer
(2019)

4. Decenciere, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.C., Meyer, F.,
Marcotegui, B., Quellec, G., Lamard, M., Danno, R., et al.: Teleophta: Machine
learning and image processing methods for teleophthalmology. Irbm 34(2), 196–203
(2013)

5. Guo, S., Li, T., Kang, H., Li, N., Zhang, Y., Wang, K.: L-seg: An end-to-end unified
framework for multi-lesion segmentation of fundus images. Neurocomputing 349,
52–63 (2019)

6. He, A., Wang, K., Li, T., Bo, W., Kang, H., Fu, H.: Progressive multiscale con-
sistent network for multiclass fundus lesion segmentation. IEEE transactions on
medical imaging 41(11), 3146–3157 (2022)

7. He, R., Yang, J., Qi, X.: Re-distributing biased pseudo labels for semi-supervised
semantic segmentation: A baseline investigation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 6930–6940 (2021)

8. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for
computer vision? Advances in neural information processing systems 30 (2017)

9. Lin, Y., Yao, H., Li, Z., Zheng, G., Li, X.: Calibrating label distribution for
class-imbalanced barely-supervised knee segmentation. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention. pp. 109–
118. Springer (2022)



10 E. Kim et al.

10. Liu, J., Desrosiers, C., Zhou, Y.: Semi-supervised medical image segmentation
using cross-model pseudo-supervision with shape awareness and local context con-
straints. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. pp. 140–150. Springer (2022)

11. Luo, X., Wang, G., Liao, W., Chen, J., Song, T., Chen, Y., Zhang, S., Metaxas,
D.N., Zhang, S.: Semi-supervised medical image segmentation via uncertainty rec-
tified pyramid consistency. Medical Image Analysis 80, 102517 (2022)

12. Montabone, S., Soto, A.: Human detection using a mobile platform and novel
features derived from a visual saliency mechanism. Image and Vision Computing
28(3), 391–402 (2010)

13. Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe,
V., Meriaudeau, F.: Indian diabetic retinopathy image dataset (idrid): a database
for diabetic retinopathy screening research. Data 3(3), 25 (2018)

14. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

15. Stitt, A.W., Curtis, T.M., Chen, M., Medina, R.J., McKay, G.J., Jenkins, A.,
Gardiner, T.A., Lyons, T.J., Hammes, H.P., Simo, R., et al.: The progress in un-
derstanding and treatment of diabetic retinopathy. Progress in retinal and eye
research 51, 156–186 (2016)

16. Taghanaki, S.A., Zheng, Y., Zhou, S.K., Georgescu, B., Sharma, P., Xu, D., Co-
maniciu, D., Hamarneh, G.: Combo loss: Handling input and output imbalance in
multi-organ segmentation. Computerized Medical Imaging and Graphics 75, 24–33
(2019)

17. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. Advances in
neural information processing systems 30 (2017)

18. Ullah, Z., Usman, M., Latif, S., Khan, A., Gwak, J.: Ssmd-unet: semi-supervised
multi-task decoders network for diabetic retinopathy segmentation. Scientific Re-
ports 13(1), 9087 (2023)

19. Wang, H., Li, X.: Dhc: Dual-debiased heterogeneous co-training framework for
class-imbalanced semi-supervised medical image segmentation. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
pp. 582–591. Springer (2023)

20. Wang, Y., Xiao, B., Bi, X., Li, W., Gao, X.: Mcf: Mutual correction framework for
semi-supervised medical image segmentation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 15651–15660 (2023)

21. Wu, H., Zhang, X., Geng, X., Dong, J., Zhou, G.: Computer aided quantification
for retinal lesions in patients with moderate and severe non-proliferative diabetic
retinopathy: a retrospective cohort study. BMC ophthalmology 14, 1–5 (2014)

22. Yu, L., Wang, S., Li, X., Fu, C.W., Heng, P.A.: Uncertainty-aware self-ensembling
model for semi-supervised 3d left atrium segmentation. In: Medical Image Comput-
ing and Computer Assisted Intervention–MICCAI 2019: 22nd International Confer-
ence, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22. pp. 605–613.
Springer (2019)

23. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
4320–4328 (2018)



Rival Networks Collaboration with Saliency Map 11

24. Zhou, Y., He, X., Huang, L., Liu, L., Zhu, F., Cui, S., Shao, L.: Collaborative
learning of semi-supervised segmentation and classification for medical images. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. pp. 2079–2088 (2019)

25. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: Redesigning skip
connections to exploit multiscale features in image segmentation. IEEE transac-
tions on medical imaging 39(6), 1856–1867 (2019)


	Semi-supervised Segmentation through Rival Networks Collaboration with Saliency Map in Diabetic Retinopathy

