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Abstract. Ejection fraction (EF) of the left ventricle (LV) is consid-
ered as one of the most important measurements for diagnosing acute
heart failure and can be estimated during cardiac ultrasound acquisition.
While recent successes in deep learning research successfully estimate EF
values, the proposed models often lack an explanation for the prediction.
However, providing clear and intuitive explanations for clinical measure-
ment predictions would increase the trust of cardiologists in these mod-
els. In this paper, we explore predicting EF measurements with Natural
Language Explanation (NLE). We propose a model that in a single for-
ward pass combines estimation of the LV contour over multiple frames,
together with a set of modules and routines for computing various mo-
tion and shape attributes that are associated with ejection fraction. It
then feeds the attributes into a large language model to generate text
that helps to explain the network’s outcome in a human-like manner.
We provide experimental evaluation of our explanatory output, as well
as EF prediction, and show that our model can provide EF comparable
to state-of-the-art together with meaningful and accurate natural lan-
guage explanation to the prediction. The project page can be found at
https://github.com/guybenyosef/EchoNarrator .
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1 Introduction

The release of the extensive Dynamic EchoNet echocardiography dataset [16] has
accelerated the adoption of deep learning models for ejection fraction (EF) pre-
diction and left ventricle (LV) contour delineation. Several innovative approaches
have been introduced, including LV segmentation [16, 2, 12], direct video regres-
sion [16, 9, 18, 15], graph- and keypoints-based models [14, 23], and attention-
based models [13] - Their potential is somewhat diminished by a common short-
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fall: the lack of clinically meaningful explanations for the predicted EF. Explain-
ability of visual deep learning models is often linked with activation maps such as
Class Activation Mapping (CAM) [27] and Grad-CAM [21], which associate im-
age regions with their contribution to the prediction. Although useful in certain
contexts, these methods often fall short in medical imaging, where they may only
highlight obvious regions such as the LV to predict EF, providing clinically cor-
rect but not meaningful information (an interesting example of this phenomenon
was shown in [13]). To overcome these limitations and improve the explainability
with human-like text, a novel approach has been developed within the subfield of
Natural Language Explanations (NLE). This approach leverages advancements
in vision-language and language models to generate text explanations that ac-
company model outcomes, providing context and clarity that activation maps
cannot provide. NLE models include the generation of text explanations based
on object attributes [4], models for associating text explanations with image re-
gions [5], and language models such as GPT2 [20, 8] and GPT3 [19]. Considering
that abnormal EF values are often linked to visible changes in the LV, providing
explanations based on those visual cues shall enhance cardiologists’ confidence in
the deep learning predictions. Inspired by attribute-based NLE strategies (e.g.,
[4, 5]), where explanations are generated based on a predefined set of attributes,
we create attributes that influence EF predictions, such as wall thickening in the
interventricular septum (hereafter referred to as bulge), regional wall motion
abnormalities, and foreshortening due to acquisition. Furthermore, we incor-
porate Large Language Models (LLMs) into our pipeline, utilizing models like
LLaMA [24] as the final step to synthesize smooth and coherent explanations.
Our innovation harnesses the capabilities of LLMs to assimilate the estimation
of relevant LV attributes, generating text explanations that are informative and
aligned with clinical practices. This method marks a significant step toward de-
veloping an AI assistant capable of engaging with clinicians through human-like
language.

Our paper presents three major contributions to the field of cardiovascular
ultrasound analysis and interpretation:

(1) Novel NLE Model for EF Prediction: We introduce the first NLE model
tailored for EF prediction in cardiovascular ultrasound. This model syner-
gizes the analytical depth of modern LLMs with spatiotemporal analysis of
geometric features, setting a new benchmark for accuracy and explainability.

(2) Self-Instruction Training Method: We develop a novel training approach for
the LLaMA model, utilizing GPT-4 to augment explanation examples. By
releasing a dataset of approx. 800 self-instructions, we lay the groundwork for
future advancements in training LLMs for echocardiography-related tasks.

(3) Evaluation Metrics for Explanation Output: Our research extends into the
development and application of evaluation metrics specifically designed for
assessing the quality of natural language explanations. We show that our
model not only achieves precise EF predictions, but also generates explana-
tions that are clinically relevant in a human-like language.
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Fig. 1. Overview of the proposed pipeline A US video is fed into a CNN video
encoder that outputs a feature representation. The features are passed to a spatio-
temporal GCN that returns keypoints for ED and ES. The keypoints serve as 1) input
for MLPs that regress the LV volumes (in green) or the EF directly (in orange) and 2)
computation of geometrical attributes that are converted into text snippets that can
be parsed into an LLM. The LLM provides a human-like explanation for the EF.

2 Methods

Our approach introduces a streamlined pipeline that enriches a GCN-based
EF prediction with clinically meaningful explanations. With echocardiography
videos as input, a video encoder extracts feature representations, then fed to a
spatio-temporal Graph Convolutional Network (GCN) which identifies anatomi-
cal keypoints. From these keypoints, the EF is predicted along with geometrical
attributes essential for our text generator model, which produces natural lan-
guage explanations of the EF predictions. An overview is shown in Fig. 1.

2.1 Multi-frame GCN Model for EF Prediction in a Single Pass

Central to our pipeline is the multi-frame Graph Convolutional Network (GCN)
model, engineered to perform EF prediction and contour detection in a single in-
tegrated operation. Previous work [23] designed a multi-task multi-frame model
that derived the EF value directly from the input encoder. That approach re-
sulted in EF and keypoints prediction being disentangled and less interpretable.
Since manual EF computation relies solely on the contours, we modified the
architecture to ensure that EF prediction follows the mathematical concept of
the ratio between both keypoints volumes. By adding two volume regressors
and then fusing the results, we base the model on prior knowledge about the
dynamics rather than relying purely on black box predictions. We explored dif-
ferent levels of adding prior knowledge, either by directly regressing the EF from
keypoints versus having two separate volume regression branches.

2.2 Attribute generation

Beyond automatically predicting LV contours, our model also derives attributes
that reflect structural changes and temporal deviations due to pathology or
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acquisition which affect the EF values. Based on clinical insights, we developed
geometrical processing routines to compute attributes from LV contour points,
capturing the intuition of cardiologists in EF assessment. This section outlines
the attributes, grounded in clinical feedback, along with the computation.

Septal bulge: A septal bulge can be a morphological sign for early hypertensive
heart disease [3] and is an asymmetric, localized thickening of the basal-to-mid
part of the inter-ventricular septum. It could be detected by calculating a wall
thickness ratio over 1.4 [11]. We compute a bulge using the LV convexity which is
the distance between a convex hull and the true contour. Ground truth contours
were visually inspected while three manual thresholds were set to distinguish
prominent bulges from undetected convexity calculated using OpenCV6.

Segment motion: The 17-segment model[1] is widely used for regional wall
motion analysis in multiple views. To simplify the process for 4CH-view, we di-
vide the contour into 7 distinctive segments and calculate the segment movement
direction relative to the overall motion as well as the vertical basal movement.

Apex movement: Foreshortening is a common problem in 2D echocardiogra-
phy which results in underestimating the LV volume and inaccurate EF estima-
tion. A foreshortened apex translates throughout the cycle, whereas a true apex
almost remains at the same point. Following the approach of [22], we compute
the apex movement in the direction of the LV long axis. Based on the distribution
in the dataset we set a threshold to indicate suspicious apex movement.

Length-width ratio: A normal LV has a bullet-like shape. Cardiovascular
diseases such as hypertension or heart failure may change the LV shape despite
age and gender being also effecting factors. We decided to use the length-width
ratio as a shape measure which is computed by dividing the apex-basal distance
by the horizontal mid-septal distance. The length-width ratio is typically around
2, as observed during our experiments, while in cases with dilated LV, resulting
in a reduced length-width ratio.

Sector intersection: One important requirement for manual and automatic
EF computation is to ensure full visibility of the LV within the ultrasound sec-
tor. Therefore, we calculate the ratio of the intersection with the detected LV
contours as a quality metric for the EF computation.

Image quality: Image quality will affect the visibility of the LV contours and the
wall movement which influences the EF estimation. We calculate the intensity
difference between the LV cavity and the myocardial wall as a measure of their
contrast. A higher contrast indicates an improved visibility. However, this metric,
though practical, does not cover all dimensions of image quality.

All of the aforementioned attributes are clustered based on their distribution
in the annotated dataset. Thresholds were defined for each attribute to create
text templates that could be fed into a language model.

6 www.opencv.org
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2.3 Generation of text explanations

The ability to translate complex geometrical and spatiotemporal attributes into
understandable natural language explanations is critical to bridge the gap be-
tween advanced echocardiographic analysis and clinical practice. Our approach
encompasses two primary phases: (1) converting the attributes into basic text
sentences that describe the underlying clinical observations, and (2) refining
these basic sentences into coherent natural language explanations suitable for
clinical use, leveraging the capabilities of a Large Language Model (LLM).

From attribute values to LLM inputs. Computed attributes are numer-
ical values that need to be converted into text tokens digestable for the LLM.
The first phase involves translating the list of visual and geometric attributes
into basic sentences by using thresholds. For instance, the numerical value
bulge= 500 is translated to "A bulge value of 500 means that there is no bulge".

Natural Language Refinement with LLM. In the second phase, we em-
ploy the LLaMA model [24], a LLM variant, and train it for generating medical
text specifically. We fine-tune LlaMA on a dataset with clinical explanations to
ensure that the generated text aligns with clinical terminology and reasoning.
To solve the limited availability of expert-generated explanations, we further
implement some data augmentation strategies to enrich the training dataset.

Synthetic Explanations. By adding prior clinical knowledge, we build
more elaborated sentences from the basic sentences as synthetic expert explana-
tions. These sentences articulate the clinical significance of each attribute in a
structured format. For instance, an attribute indicating a significant septal bulge
would be converted into a more elaborated sentence like "There is a large septal
bulge, which may adversely affect the EF."

Data Augmentation through Self-instruction. We adopted a self-
instruction method [25] using the GPT-4 model to augment a small initial
dataset containing experts explanations. By feeding 5 expert explanations into
GPT-4, along with a chain-of-thought prompt [26] that includes examples of the
input (basic sentences) and the desired output (expert explanation), we instruct
GPT-4 to simulate medical expert explanations for novel sets of basic text. This
use of chain-of-thought processing with GPT-4 effectively enlarges our dataset
towards a ten times expansion of the initial set.

This dual process ensures that our model not only accurately identifies the
visual and geometrical attributes indicative of specific cardiac conditions, but
also communicates findings in a way that clinicians can immediately interpret.

2.4 A novel metric to evaluate the EF explanation via LLMs

Evaluating unstructured text is crucial to identify errors in clinical LLM, yet
human evaluation is time consuming and potentially subjective, highlighting
the need for automated metrics. However, initial experiments indicated that
even simple adversarial examples could deceive most of the existing metrics for
sentence similarity. Given that the output of the proposed LLMs is unstruc-
tured text focused on key attributes, we designed a metric specifically aimed at
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assessing factual correctness. To accomplish this, we use the recently released
Mistral model [7], another and faster LLM variant. By creating nine targeted
prompts with instructions and one-shot context for Mistral, we evaluate whether
attributes appear in the text as positive (pathological), negative (normal), or un-
specified. This allows a comparison between ground truth and prediction beyond
mere textual similarity. In cases where an attribute is unspecified, its status is
considered normal. We quantify the performance by reporting the accuracy, the
count of true contradictions, hallucinations, and of missing attributes.

3 Experiments

3.1 Data

Dataset: We use the EchoNet-Dynamic dataset [16], which contains 10,030
echocardiography videos from healthy and pathological patients. Each video is
annotated with 40 LV contour points, one basal and apex point at the end-
diastolic (ED) and end-systolic (ES) frame, along with the EF. The training,
validation and test splits provided by EchoNet are used for benchmarking.

Annotations: We trained the GCNs on the annotated keypoints from the
EchoNet dataset, employing a multi-frame strategy in [23]. To simplify the pro-
cessing, we selected ED and ES frames and sampled 14 evenly spaced inter-
mediate frames from each video. For our experiments, ED and ES frames were
assumed to be known as they can be computed from the ECG or automatically.
A lack of Electronic Health Records (EHR) prompted us to enlist two cardiol-
ogy experts who annotate a subset of the EchoNet data with video-text pairs.
The experts watched the videos and provided text descriptions including an EF
assessment and reasoning, focusing on attributes like LV shape, wall movement,
and bulge presence. They were allowed to use different structures or description
formats to ensure a diverse text reflection of real-world scenarios. 89 image-text
pairs were generated for training, with additional 48 pairs designated for testing.

3.2 NLE evaluation metrics

We incorporated several different evaluation metrics to evaluate our LLM out-
puts from different aspects utilizing the advantages of each. We exploit the Clin-
icalBERT [6] and Sentence-based BERT models (sBERT) [17] that generate
single embeddings either per word or per sentence followed by cosine similar-
ity and are pre-trained on clinical texts. Additional text similarity models are
provided in the suppl. material. The Mistral score was introduced to evaluate
explanations against specific clinical attributes, leveraging a recently developed
Mistral LLM [7] tailored for this purpose. This custom metric (sec. 2.4), aims
to provide a more nuanced assessment of the clinical relevance and accuracy of
the explanations generated. In addition to accuracy metrics, we also used the
Flesch Reading Ease score to measure contextual richness of the explanation (a
lower Flesch score means contextually richer text).
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3.3 EF predictions with generated explanations

Implementation: Our GCN model uses a ResNet-3D-18 as video encoder back-
end, optimizing for the efficient processing of echocardiography videos. GCN
model training focuses on accurately predicting LV keypoints, which are crucial
for the subsequent estimation of EF and the generation of explanations. For
the NLE component, we train the LLaMA model to generate clinically relevant
explanations based on attributes derived from the GCN output. LLM training
included a low-rank adaptation on the LLaMA-1 model through 8-bit quan-
tization, with a learning rate of 0.0003 and a batch size of 32. Training was
performed for 5 hours on two A6000 GPUs, each equipped with 48GB memory.
The end-to-end inference pipeline ensures a seamless transition from raw video
data to EF predictions accompanied by understandable explanations. For this
experiment, the GCN with the lowest mean absolute error (MAE) was used.
Detailed implementation specifics are available on GitHub for reproducibility7.

Results: In evaluating our end-to-end inference system, we focus on both
the EF prediction accuracy and the quality of the generated explanations. While
competitors exist for EF prediction, our approach is unique in integrating NLE,
setting a benchmark in the field. Tab. 1 lists the details of our comparison with
previous models using the Dice score, the mean keypoint error (MKE) and the
accuracy of the prediction of EF. We show that our single task NLE GCN can
reach a lower MKE than the EchoGraph while maintaining the same EF accu-
racy. Predicting from volumes (Vol) versus predicting directly from keypoints
(EF) performed similarly well. For NLE prediction, we evaluate the coherence
and clinical relevance of the generated explanations quantitatively (Tab. 2) and
qualitatively (Fig. 2). In Tab. 2, we added a prediction of the LLaVA-Med
model [10] when we input an image showing ED and ES frames, followed by
the instruction to explain the EF (see suppl. material for details). Although
different from our model in the design and goal, it seems to be the closest in
providing baseline text explanations.

Analysis: Our results demonstrate notable accuracy in EF prediction (Tab. 1)
combined with the generation of clinically meaningful explanations. Compared
to competitors in EF predictions, the scores in Tab. 2 further show that our sys-
tem not only achieves good EF estimation, but also introduces the capability of
generating accurate, complete, and human-like explanations. Tab. 2 also shows
that predicted explanations are better from simple baselines. The enhancement
of NLE prediction in our model can be attributed to the use of synthetic data and
data augmentation techniques (Sec. 2.3). The utilization of the self-instruction
by using Chain-of-Thought in GPT4 further refines the model’s capability to
generate plausible and contextually more rich explanations that meet clinical
expectations, as shown by its lower scores in the Reading Ease metric.

7 https://github.com/guybenyosef/EchoNarrator
8 Means random answers to the attributes from sec.2.2
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Model Frames Dice (%) MKE (px) EF MAE Cycle Explainable
EchoNet [16] 32 91.7± 4.2 2.5± 1.2 4.22 Single No
EchoGraphs [23] 16 90.3± 4.3 2.7± 1.5 4.01 Single No
EchoCoTr-S [15] 36 N/A N/A 3.95 Multi No
GEMTrans [13] 16 N/A N/A 4.15 Multi Heatmaps
NLE EF GCN (Ours) 16 91.5± 4.3 2.4± 1.1 4.00 Single Text
NLE Vol GCN (Ours) 16 91.4± 4.4 2.4± 1.1 4.05 Single Text
Table 1. Segmentation and EF accuracy for different methods evaluated on EchoNet
testset (n=1264) and annotated ED and ES frames (MKE = mean L1 keypoint pixel
error). Multi refers to whole videos whereas single refers to one cycle or ED to ES.

Model mistral acc↑ halluc.↓ contradict.↓ missing↓ cbert↑ msbert↑ Flesch↓
random8 0.45
LLaVA-Med 0.67 1.49 0.87 1.49 0.92 0.95 54.92
NLE-EF-13B 0.77 0.54 1.02 1.50 0.93 0.96 58.59
NLE-EF-7B 0.77 0.65 0.67 1.44 0.94 0.95 57.20
NLE-EF-13B self-i 0.77 0.44 1.13 1.65 0.91 0.95 30.91
NLE-EF-7B self-i 0.80 0.50 0.90 1.33 0.92 0.95 27.42
Table 2. Evaluation of the NLE-EF versions on 48 samples from the EchoNet test
set using different averaged metrics such as mistral score accuracy, average number
of mistral contradictions, hallucinations and missing attributes, cbert score (clinical
BERT), msbert score (sentence medsBERT), and Flesch reading ease.

4 Discussion and conclusion

Our method introduces an innovative approach by leveraging a GCN and a
LLM (LLaMA) to provide LV contours and EF along with geometrical features
and a text explanation. The main contribution is the integration of cardiac fea-
tures (potentially less intuitive for humans) derived from a vision model with an
LLM that translates these features into explanatory text. Considering that the
primary focus was on the effective combination of these components to enhance
interpretability, architectural choices were based on experiments. Leveraging syn-
thetic and augmented data can improve interpretability without compromising
prediction accuracy. This balance is vital for wider clinical adoption, where the
clarity of the explanations is as important as the accuracy. Our evaluation with
another LLM aims to increase sensitivity to contradictions while configurations
and prompt design need to be considered carefully. Despite notable successes,
we acknowledge limitations such as a relatively small dataset, noisy labels and
prompts, which could affect our findings’ robustness and generalizability. We
incorporated six widely used LV attributes, but clinical feedback suggested ex-
tending this to include the right side of the heart. Although GCN and LLM
pre-training add more data implicitly, an extension of the dataset, including
more attributes, and a clinical evaluation will be future work. The proposed
method facilitates AI-assisted diagnosis, reporting, and education by providing
cardiologists an accurate visual output with human-readable explanations.
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Fig. 2. (Zoom in for optimal view) LV contour estimation, EF prediction and its text
explanation as provided by the NLE-EF-13B self-instruct on EchoNet test examples.
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