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Abstract. Digital pathology images are not only crucial for diagnos-
ing cancer but also play a significant role in treatment planning, and
research into disease mechanisms. The multiple instance learning (MIL)
technique provides an effective weakly-supervised methodology for ana-
lyzing gigapixel Whole Slide Image (WSI). Recent advancements in MIL
approaches have predominantly focused on predicting a singular diag-
nostic label for each WSI, simultaneously enhancing interpretability via
attention mechanisms. However, given the heterogeneity of tumors, each
WSI may contain multiple histotypes. Also, the generated attention maps
often fail to offer a comprehensible explanation of the underlying reason-
ing process. These constraints limit the potential applicability of MIL-
based methods in clinical settings. In this paper, we propose a Prototype
Attention-based Multiple Instance Learning (PAMIL) method, designed
to improve the model’s reasoning interpretability without compromising
its classification performance at the WSI level. PAMIL merges prototype
learning with attention mechanisms, enabling the model to quantify the
similarity between prototypes and instances, thereby providing the inter-
pretability at instance level. Specifically, two branches are equipped in
PAMIL, providing prototype and instance-level attention scores, which
are aggregated to derive bag-level predictions. Extensive experiments are
conducted on four datasets with two diverse WSI classification tasks,
demonstrating the effectiveness and interpretability of our PAMIL. The
code is available at https://github.com/Jiashuai-Liu/PAMIL

Keywords: Multiple instance learning · Prototype learning · Whole
slide image classification.

1 Introduction

The rise of digital pathology has driven substantial advancements in applying
artificial intelligence to analyze Whole Slide Images (WSI). Nevertheless, the

https://github.com/Jiashuai-Liu/PAMIL
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necessity for expert pathologists to annotate gigapixel images presents hurdles for
fully supervised methods in thoroughly processing WSIs [9]. As a result, Multiple
Instance Learning (MIL) has gained prominence [4], employing adeptly trained
feature extractors and aggregators to merge instance-level (refers to image patch)
information, thereby facilitating predictions for the entire bag (refers to WSI).

Among MIL-basedWSI classification methods, incorporating attention mech-
anisms into the MIL framework has demonstrated remarkable classification ca-
pabilities [10,16,20]. However, the application of these methods in real clinical
scenarios is hampered by two main limitations. On the one hand, they lack the
interpretability that is recognized by pathologists [19,26,25]. While attention-
based MIL provides a form of interpretability by quantifying the importance
of each instance through the attention network, it fails to disclose the humanly
comprehensible reasons behind the high attention scores of certain instances. On
the other hand, they fall short of supporting complex yet common pathological
diagnostic tasks. Existing MIL methods are mostly suitable for tasks involving
one label per WSI, while a single tumor slide often displays multiple histopatho-
logical phenotypes, due to the heterogeneity of tumors.

Fortunately, incorporating prototype learning with MIL seems to be a pos-
sible solution. ProtoMIL [19] attempted to enhance the interpretability of the
inference process by prototype learning, building upon case-based reasoning akin
to human thinking processes. However, the initialization of ProtoMIL’s proto-
types is random within the model, and the design of loss function does not ensure
alignment between the prototypes and instances distributions. In addition, the
prototypes in ProtoMIL are predefined with specific categories, limiting their
ability to adapt and learn in multi-label scenarios.

To address these limitations, we propose a Prototype Attention-based Mul-
tiple Instance Learning (PAMIL), which embeds prototypes into the attention
mechanism to quantify the similarity between prototypes and instances. The
prototype, serving as a globally shared parameter, offers a global case-based in-
terpretation of the model inference. Subsequently, we design two branches, proto-
type representation and instance representation, to perform feature aggregation
and collaboratively derive bag-level predictions. The two branches assign weights
to prototypes and instances respectively, providing prototype and instance-level
interpretation. Different from ProtoMIL, our prototypes don’t have predefined
categories, which enables its adaptability to both multi-label and multi-class clas-
sification tasks. This flexibility allows prototypes to incorporate representations
of different subtypes during training. Lastly, we devised an optimization strategy
and incorporated regularization terms to ensure the stability of the model train-
ing process. The efficacy of PAMIL was assessed across four datasets, covering
both multi-label and multi-class classification tasks, demonstrating that PAMIL
achieved state-of-the-art WSI classification performance across all datasets, si-
multaneously offering an extensively comprehensible reasoning process.
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2 Related Work

2.1 Multiple Instance Learning

Classification of WSI via MIL can be categorized as instance-level and embedding-
level approaches. The instance-level approaches predict individual instances and
aggregate these predictions to yield a bag-level prediction [27,1,7]. However, these
approaches inadequately consider the inter-instance relationships within the bag,
resulting in imprecise final predictions. The embedding-level approaches com-
mence by extracting instance-level features, which are subsequently aggregated
into bag-level features using various strategies [24,13,8,6]. To improve bag-level
performance and interpretability in embedding-based MIL, Ilse et al. [10] intro-
duced an attention mechanism. This approach utilizes attention scores to assign
significant importance weights to instances, thereby aiding in the aggregation of
bag-level features through a selective summarization process. Notably, involving
attention mechanism has demonstrated significant efficacy across diverse WSI
analysis tasks [16,20,14,29,11]. Furthermore, some studies have integrated the
benefits of both embedding-level and instance-level approaches, leveraging their
respective strengths to enhance model performance [21,18].

2.2 Prototype Learning

Prototype learning finds extensive application in natural language processing
and computer vision, aiming to optimize the feature space by preserving a global
prototype. Chen et al. [2] proposed a pioneering approach that employs proto-
type learning to enhance the interpretability of the model inference process. On
this basis, the majority of prototype-based interpretability methods [3,5,12,17]
model the feature space using several global prototypes, then the similarity be-
tween prototypes and local regions is utilized to elucidate the reasoning process
behind image recognition. Recently, the combination of prototype learning and
MIL has been extensively investigated, which aims to guide the distribution of
the instance space [19,28,15,23]. For instance, Rymarczyk et al. [19] integrated
the concept of ProtoPNet into the ABMIL framework, effectively modeling the
human reasoning process in MIL. Concurrently, PMIL [28] employs a dual clus-
tering approach to identify prototypes and incorporates metric learning to re-
fine the feature space of instances, further improving the model’s performance.
However, previous methods often struggle to balance prototype interpretability
with bag-level performance. Some rely solely on prototype-instance similarity for
prediction, which is insufficient for complex tasks like multi-label classification.
Others focus on guiding the feature space through prototypes but overlook the
importance of interpretability. In this paper, we integrate prototypes with the
attention mechanism, developing a prototype attention approach. This approach
improves interpretability through prototype reasoning while maintaining strong
bag-level classification performance.
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Fig. 1. Overview of PAMIL.

3 Method

3.1 Preformulation

For a WSI dataset, each slide is considered as a bag, and the patches serve as
instances. Each bag is denoted as X = {x1, x2, · · · , xn}, where xi represents the
i-th instance of bag X, with n instances in total. For multiple instance learning,
only the bag-level label is given, represented as Y = {Y1, Y2, · · · , Yk}, where
Yi ∈ {0, 1}. If at least one instance in the bag belongs to class Yi, then Yi = 1.

3.2 PAMIL for WSI Classification

The PAMIL framework is illustrated in Fig. 1. Initially, all instances go through
a pre-trained encoder e(·) to generate feature embeddings V = {v1, v2, . . . , vn}.
Next, we incorporate prototypes into the attention mechanism to assess the
similarity between prototypes and instances. For feature aggregation, we use
two interactive branches for instance and prototype features, respectively. This
approach constrains prototypes to be selected from all available patches, thus
enhancing the interpretability of the inference process in PAMIL.

Instead of using randomly initialized prototypes [19], we adopt K-means clus-
tering twice on the instance embeddings within all bags, obtaining the initial
global prototype embeddings P = {p1, p2, · · · , pm}. Both P and V are then pro-
cessed by a dimensionality reduction layer g(·) to get compressed embeddings H
for prototypes and T for instances. Next, we apply cross-attention to derive the
similarity matrix S = {si,j |i = 1, · · · , n, j = 1, · · · ,m} between embeddings vi
and pj :

S = tanh (wqT )
⊤ × sigmoid (wkH) (1)

where wq and wk represent the learnable weight matrices for T and H, respec-
tively. Then, we design two interactive branches that utilize the prototype-level
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and instance-level representations for generating bag-level predictions, respec-
tively, supporting the corresponding reasoning processes for interpretation.

In the instance representation branch, a learnable weight matrix wc is used
to map the relationship between instances and prototypes S to the relationship
between instances and categories A, i.e., A = wc · S. A also can be regarded as
the attention matrix for all instances. Additionally, wc implicitly models the cor-
relation between prototypes and categories, thereby providing category-related
guidance for updating prototypes during back-propagation. The bag-level pre-
diction Yinst is generated by aggregating embeddings T with A:

Yinst = fcls1

(
Â · T

)
, (2)

where Â = softmax(A) ∈ Rn×c represent the softmax normalized attention
matrix, fcls1(·) is a classifier with one hidden layer.

In the prototype representation branch, the similarity matrix S is also used
to aggregate compressed prototype embeddings H into another bag-level feature
which is then fed into a classifier fcls2 to obtain another prediction for this bag:

Yproto = fcls2

(
Ŝ ·H

)
, (3)

where Ŝ ∈ Rm×c represent the similarity matrix S after the max-pooling opera-
tion, serving as a metric for prototype-to-bag similarity. It critically functions as
the interpretability for each prototype during the inference in this branch. The
final prediction of the model is the average of the two probability values.

Finally, three different losses are used for model optimization:

L = λce · Lce + λer · Ler + λclst · Lclst
Lce = BCE (Yinst, Y ) +BCE (Yproto, Y )

Ler = KL (Yproto∥Yinst)

Lclst =
1
n

∑
i maxj (softmax (si,j)) +

1
m

∑
j maxi (softmax (si,j))

(4)

where BCE stands for the binary cross-entropy loss function, and KL represents
the Kullback-Leibler divergence. Ler is the equivalent regularization loss, which
ensures consistency between Yproto and Yinst. Lclst is the clustering loss, aimed
at refining the shared embedding space of instances and prototypes.

Prototype Optimization and Interpretation. We optimized the prototypes
in a multi-stage manner similar to [19]. After initialization, the prototypes are
refined according to loss functions and are associated with categories via the
weight matrix wc. Subsequently, a prototype projection operation is executed,
during which prototypes are substituted with the most similar instances within
all bags. This adjustment enables us to interpret the model reasoning process
by the similarities between prototypes and instances.

The two branches in PAMIL provide interpretations at both the instance level
and the prototype level, both of which can be traced back to the similarity matrix
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S. In the instance representation branch, the attention matrix A determines the
contribution of each instance to different categories. It can be traced back to
the similarity matrix S between instances and each prototype. In the prototype
representation branch, Ŝ signifies the importance of the prototypes to the bag.
This importance can be linked to the most significant instance in the bag, that
is, the instance closest to the prototype in the embedding space.

4 Experiments

Datasets. The proposed PAMIL was evaluated on four public datasets for
multi-class or multi-label WSI classification. For the multi-class classification
task, a bag has only one positive category, meaning that at least one of the in-
stances in the bag is of the same category as the bag, and the rest are negative
instances. For this task, we derive two datasets from TCGA (The Cancer Genome
Atlas): non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC). For
the multi-label classification task, a bag could have multiple labels as positive.
Each dimension of the label indicates whether there are corresponding instances
in the bag. For this task, we select the Stomach Cancer (STAD) dataset from
TCGA and the publicly available SICAPv2 dataset[22], which specifically fo-
cuses on prostate Gleason grading. The details are as follows: (1) TCGA-NSCLC
consists of 937 slides, specifically 447 slides of Lung Adenocarcinoma (LUAD)
and 490 slides of Lung squamous cell carcinoma (LUSC). (2) TCGA-RCC con-
sists of 660 slides, specifically 299 slides of Clear Cell RCC (KIRC), 258 slides of
Papillary RCC (KIRP) and 103 slides of chromophobe RCC (KICH). (3) TCGA-
STAD consists of 339 slides, specifically 218 slides of Highly Differentiated (HD)
, 265 slides of Poorly Differentiated (PD) and 50 slides of Mucinous (Muc). (4)
SICAPv2 comprises 18,426 cropped patches obtained from 153 slides labeled
with G3, G4, G5, and normal.

Baseline and Evaluation Metrics. The baseline consists of five attention-
based MIL methods: CLAM[16], DSMIL[14], DTFDMIL[29], Additive MIL[11],
TransMIL[20] and a prototype-based MIL method: ProtoMIL[19]. Most of these
methods reached state-of-the-art at the time. To assess the classification perfor-
mance, we employ accuracy and area under the curve (AUC) scores as evaluation
metrics. The accuracy is calculated using a threshold of 0.5 in all experiments.
We perform five-fold cross-validation to evaluate our model on all datasets.

4.1 Experiments and Results

Except for SICAPv2, we generate non-overlapping patches from WSIs at 40×
magnification with 2048 × 2048 pixels and at 20× magnification with 1024 ×
1024 pixels. These patches are then extracted by a pre-trained ResNet-50 to get
feature vectors. When initializing the prototypes, we first cluster patch feature
vectors of each slide to 10 cluster centers, and then cluster all cluster centers
to obtain 8 initialization prototypes. During the training process, we set λce to
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1, λer to 0.4 and λclst to -0.2. The training process utilize the Adam optimizer
with a learning rate set to 0.0001. The results of the comparative experiments
are presented in Table 1.

Table 1. Comparison Results (presented in %).

Method
TCGA-STAD SICAPv2 TCGA-NSCLC TCGA-RCC

AUC ACC AUC ACC AUC ACC AUC ACC

CLAM 81.26±4.04 80.80±4.32 85.52±3.95 82.20±4.97 90.29±2.23 81.82±3.62 97.59±1.56 90.02±3.92
Additive MIL 80.30±4.30 74.43±1.42 82.57±4.60 71.90±4.20 86.71±4.10 82.65±2.80 95.85±2.88 87.76±4.40

DSMIL 80.33±3.89 75.18±1.63 85.71±6.09 71.87±2.85 88.71±2.80 81.10±1.73 98.21±0.85 89.40±1.86
DTFDMIL 76.82±6.08 73.22±2.73 82.03±6.15 68.43±2.62 86.47±2.95 80.18±2.31 95.56±1.66 85.47±3.52
TransMIL 80.49±5.32 75.91±3.04 85.52±6.59 71.97±2.41 88.83±3.39 78.44±4.25 97.42±0.91 90.01±2.68
ProtoMIL - - - - 70.41±1.28 63.34±8.10 76.26±8.71 59.70±9.07
PAMIL 84.75±3.55 81.66±3.67 87.57±3.93 81.50±2.98 89.85±2.10 81.92±2.56 97.58±1.21 90.17±4.02

From Table 1, we can see that compared with all the state-of-the-art methods,
PAMIL achieves competitive WSI classification performance. Moreover, com-
pared with traditional prototype-based MIL (ProtoMIL), PAMIL has achieved
huge improvements, 20-30% in AUC. Furthermore, for multi-label classifica-
tion datasets, PAMIL outperforms all other methods in AUC, due to the well-
designed prototype optimization strategy. Beyond the competitive bag-level per-
formance, PAMIL can offer a comprehensive explanation of its reasoning process.

4.2 Visualization of Interpretability

To illustrate the interpretability of PAMIL, we visualize the entire inference pro-
cess. Two selected samples from the TCGA-STAD dataset are shown in Fig. 2.
We use similar colors to mark prototypes belonging to the same category, i.e.,
blue for “HD”, red for “PD”, green for “Muc”, and yellow for “Normal”.

We take the first slide as an example, which is predicted to have “HD” and
“PD” subtypes. The predictions of both branches could be traced back to the
similarity score S, as shown in Fig. 2(c), which is represented as the similarity
between patches of this WSI and patches obtained by prototype projection. In
the instance representation branch, the attention matrix A represents the im-
portance of each patch to the category, as depicted in Fig. 2(d), and it is derived
from the weighted sum of similarity score S with wc as the weight. Compared
with Fig. 2(c), a category correspondence is found between the attention score
and the prototype similarity. In the prototype representation branch, the proto-
type score expresses the importance of the prototypes to this WSI. We choose
the prototypes with top-4 prototype scores and show the patches that are most
similar in the WSI, as depicted in Fig. 2(b).

4.3 Ablation Study

To further verify the design of each module in the model, we conducted an
ablation study. The results are presented in Table 2. We proceeded to ablate
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Fig. 2. Visualization of PAMIL reasoning process. Prototypes predicted to be of the
same category according to matrix wc are labeled with similar colors. (a) The original
WSI. (b) Patches with the highest prototype similarity, marked in (a) accordingly.
(c) The similarity score map, which labels each patch as the category of the most
similar prototype. (d) The patch prediction masks from the attention matrix. (e) The
annotation masks from the pathologist.

the cluster initialization of the prototype, the instance representation branch
(IRB), the prototype representation branch (PRB), as well as the equivalent
regularization loss (Ler) and clustering loss (Lclst).

Table 2. Ablation study for PAMIL (presented in %).

Method
TCGA-STAD SICAPv2 TCGA-NSCLC TCGA-RCC

AUC ACC AUC ACC AUC ACC AUC ACC

w/o Proto Init 81.46±5.27 76.31±6.44 82.79±3.70 73.61±2.01 89.12±2.12 82.33±3.08 97.07±1.14 89.10±4.36
w/o IRB 81.72±4.72 76.46±3.72 80.84±6.72 73.67±7.43 87.83±3.77 81.12±4.27 96.74±1.52 89.72±4.74
w/o PRB 82.95±5.14 74.56±11.85 87.10±5.16 81.45±3.79 89.02±1.43 82.13±2.86 97.29±0.83 89.11±2.94
w/o Ler 82.31±4.53 80.34±4.72 84.97±2.94 79.30±3.43 89.29±2.60 81.62±2.69 97.20±1.62 89.13±4.95
w/o Lclst 81.16±5.22 76.95±4.53 85.27±5.28 77.92±6.66 89.16±2.71 82.64±4.52 96.16±3.18 88.07±6.24

ours 84.75±3.55 81.66±3.27 87.57±3.93 81.50±2.98 89.85±2.10 81.92±2.56 97.58±1.21 90.32±4.20

The results show that each module and the loss function designed in PAMIL ef-
fectively improve the bag-level prediction performance. The Ler loss plays a cru-
cial role in stabilizing the two-branch prediction. Interestingly, without the Ler

loss, the model’s performance deteriorates even compared to the single-branch
prediction. Additionally, the results of the ablation experiments demonstrate
that the two branches of the model can achieve promising results when mak-
ing independent predictions. This suggests that both branches can be effectively
utilized as separate backbone models for further research endeavors.
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5 Conclusion

In this paper, we propose a novel method for MIL that leverages prototype
attention across two inference branches. Our method incorporates prototype
learning to facilitate case-based interpretability and tackle the complexities of
multi-label classification. A key feature of our approach is the ability of our pro-
totypes to encapsulate category information independently of pre-defined cat-
egories throughout the training phase. Through experimental analysis of four
datasets, we assessed the efficacy of the proposed PAMIL.
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