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Abstract. Cardiovascular diseases are the leading cause of death world-
wide, and accurate diagnostic tools are crucial for their early detec-
tion and treatment. Electrocardiograms (ECG) offer a non-invasive and
widely accessible diagnostic method. Despite their convenience, they are
limited in providing in-depth cardiovascular information. On the other
hand, Cardiac Magnetic Resonance Imaging (CMR) can reveal detailed
structural and functional heart information; however, it is costly and
not widely accessible. This study aims to bridge this gap through a con-
trastive learning framework that deeply integrates ECG data with in-
sights from CMR, allowing the extraction of cardiovascular information
solely from ECG. We developed an innovative contrastive learning algo-
rithm trained on a large-scale paired ECG and CMR dataset, enabling
ECG data to map onto the feature space of CMR data. Experimental
results demonstrate that our method significantly improves the accu-
racy of cardiovascular disease diagnosis using only ECG data. Further-
more, our approach enhances the correlation coefficient for predicting
cardiac traits from ECG, revealing potential connections between ECG
and CMR. This study not only proves the effectiveness of contrastive
learning in cross-modal medical image analysis but also offers a low-cost,
efficient way to leverage existing ECG equipment for a deeper under-
standing of cardiovascular health conditions. Our code is available at
https://github.com/Yukui-1999/ECCL.
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1 Introduction

Cardiovascular diseases are the foremost cause of mortality globally, posing a
significant threat to human health [18]. Early detection and treatment of these
diseases are imperative, necessitating the reliance on precise diagnostic tools.
Among the various diagnostic methods, Electrocardiograms (ECG) emerge as
the preferred choice due to their non-invasive nature, simplicity of operation, and
widespread availability [27]. ECGs are capable of revealing basic cardiac-related
features such as heart rate and arrhythmias, providing essential diagnostic infor-
mation for the preliminary detection of cardiac anomalies. In recent years, ECG-
based deep learning models have been increasingly applied in the analysis of
cardiovascular diseases, showcasing the significant potential of ECG in detecting
and classifying various cardiovascular conditions [3,16,25]. These models employ
advanced machine learning techniques [22,28,10] and leverage large datasets of
ECG recordings, allowing for the identification of subtle patterns and abnormal-
ities that may be indicative of cardiovascular-related diseases [1,12,24,9,13,2].
Despite the significant role that ECG plays in routine clinical diagnostics, its
capacity to provide detailed cardiovascular information is limited. In contrast,
Cardiac Magnetic Resonance Imaging (CMR) offers comprehensive phenotypic
and morphological descriptions of the heart, including advanced information on
cardiac structure, function, and tissue characteristics [26], establishing it as the
gold standard for evidence-based diagnosis of various cardiovascular diseases [14].
However, the complexity of CMR operations, its high cost, and the technical ex-
pertise required for operators restrict its use in primary healthcare institutions,
particularly in rural hospitals [11].

Considering the limitations of ECG in delivering comprehensive cardiovas-
cular insights, the emergence of multi-modal contrastive learning, inspired by
foundational projects like ConVIRT [29] and CLIP [20], offers a promising path-
way to augment ECG analysis. Notably, research efforts such as those by Qiu
et al [19]. and Liu et al [15]. have pioneered the use of contrastive learning be-
tween ECG signals and textual data to bolster model efficacy for downstream
applications. Furthermore, the innovative proposal by Radhakrishnan et al [21].
for a cross-modal autoencoder that bridges ECG and CMR technologies aims to
furnish a thorough cardiovascular health assessment utilizing solely ECG data.
This approach, however, raises concerns regarding potential inconsistencies in
the encoding of data across different training phases, which could hinder the
achievement of a cohesive representation and impede the full transfer of infor-
mation. To surmount these challenges and effectively close the diagnostic divide
between ECG and CMR for cardiovascular disease identification, we introduce
a novel contrastive learning methodology. This method strategically freezes the
CMR encoder after pre-training, facilitating a seamless and efficient transfer of
data from CMR to ECG within the latent space. This innovation significantly
augments the diagnostic utility of ECG-based models in identifying and classi-
fying cardiovascular diseases. Our primary contributions are as follows:
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– We propose a contrastive learning framework to transfer detailed cardiac
information from CMR into the feature embeddings of ECG, overcoming
the limitations of ECG in providing deep cardiovascular information.

– We validate our method on 41,519 samples from the UK Biobank (UKB).
The achieved results demonstrate that our method significantly enhances the
predictive capability of ECG for cardiac phenotype prediction, as well as for
the prediction of conditions such as myocardial infarction and heart failure.

– We conduct extensive ablation experiments to verify the effectiveness of each
component of our model, ensuring a comprehensive understanding of its
contributions to the overall performance.

Fig. 1. ECCL is structured into two stages. In the first stage, we conduct self-supervised
training for ECG and supervised training for CMR. In the second stage, we utilize the
CMR encoder trained during the first stage and proceed with contrastive learning for
both ECG and CMR, along with supervised fine-tuning for ECG.

2 Method

We propose a novel cross-modal contrastive learning approach, dubbed ECCL
(Electrocardiogram-Cardiac Contrastive Learning), that utilizes deep learning
techniques to explore the relationship between ECG and CMR data. Our pro-
posed ECCL aims to enhance the overall representation capability of ECG as
a single modality for cardiovascular analysis. As shown in Fig. 1, our method
involves a first phase of self-supervised pre-training for ECG and supervised pre-
training for CMR, followed by a second phase of cross-modal contrastive learning
and supervised fine-tuning for ECG.
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2.1 Self-supervised Pre-training for ECG and Supervised
Pre-training for CMR

We utilize ViT [6] and Swin Transformer [17] as encoders for ECG and CMR,
respectively. For the self-supervised pre-training of ECG, we employ the Masked
Autoencoder (MAE) architecture as outlined by He et al. [7]. By selectively
masking portions of the input data and then tasking the model with predict-
ing these masked values, the MAE framework encourages the learning of more
comprehensive and nuanced embeddings. This approach not only facilitates the
encoder in capturing a richer representation of the underlying ECG signals but
also enhances its ability to discern subtle patterns and variations within the
data. Considering an ECG signal with dimensions x ∈ RC×T , where C repre-
sents the number of leads and T represents the number of sampling points, we
utilize the ViT methodology to partition the C × T signal into multiple tokens,
thus transforming the data format into L×D, where L is the number of tokens
and D is the dimension size of each token. Subsequently, we randomly mask
Lm tokens, leaving Lv tokens visible, where L = Lm + Lv. Let f be the MAE
encoder and g the MAE decoder, then x̂ = g(f(Xv)). By minimizing the Mean
Squared Error (MSE) loss of the reconstruction, we can obtain an ECG encoder
capable of generating rich embedding information.

For CMR data, we opt for a supervised learning approach during pre-training.
To fully explore the information potential within CMR, we utilize the 82 cardiac
phenotype indicators found in the UK Biobank dataset, including LV myocardial
mass, and LV end-diastolic volume, among others, with a complete list available
in the supplementary materials [4]. Additionally, we conduct training for specific
conditions like myocardial infarction (ICD10 I21), cardiomyopathy (ICD10 I42),
atrial fibrillation (ICD10 I48), and heart failure (ICD10 I50). When dealing
with cardiac phenotypes, we use Mean Squared Error as the loss function for
regression training, while for diseases, we employ Binary Cross-Entropy Loss for
classification training. Given the low prevalence of disease cases, typically around
2% of the dataset, we implement a strategy where we combine all positive cases
with a randomly selected subset of negative samples to create a small sample set
for iterative training. Through this supervised training process, we develop five
pre-trained CMR encoders, which will be frozen in subsequent steps to facilitate
cross-modal contrastive learning with ECG.

2.2 Cross-Modal Alignment with Frozen CMR Encoder and
Supervised Training for ECG

During the cross-modal alignment stage, we employed a loss function similar to
CLIP to achieve the alignment of ECG and CMR in the latent space. Assuming
the ECG encoder as fe, which was copied weight from the encoder after SSL in
stage one, the projection head as ge, the CMR encoder as fc, the projection head
as gc, with xe and xc representing the input ECG and CMR data respectively,
then the features in the latent space for ECG are ze = ge(fe(xe)), and for CMR
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are zc = gc(fc(xc)). The loss for ECG is defined as:

Lecg = − log
exp

(
z⊤e zc/τ

)∑k
j=0 exp

(
z⊤e zjc/τ

) (1)

The loss for CMR is defined as:

Lcmr = − log
exp

(
z⊤c ze/τ

)∑k
j=0 exp

(
z⊤c zje/τ

) (2)

The total contrastive learning loss is:

LCL =
1

2
Lecg +

1

2
Lcmr (3)

To maintain the stability of the CMR encoder during the subsequent steps,
we froze the CMR encoder during the cross-modal alignment training phase. By
doing so, we preserve the feature representations learned during the supervised
pre-training stage. Freezing the parameters of the CMR encoder ensures that
the representations on the CMR side remain stable and consistent when aligning
with ECG data. This is essential for preserving the quality of information transfer
between the modalities.

In addition to contrastive learning, we conduct supervised training on ECG
data for specific tasks. We use the same labels and cardiac phenotype indicators
as employed in the supervised training phase for CMR. These indicators cover
four categories of cardiovascular diseases—heart failure, myocardial infarction,
cardiomyopathy, and atrial fibrillation—available in the UK Biobank (UKB)
dataset. Assuming the classification head as h, and the model loss as:

Ltask = loss_fn(h(fe(xe)), label) (4)

we employ MSE Loss as loss_fn for regression of cardiac phenotype indicators
and BCE Loss as loss_fn for disease classification. Given the scarcity of positive
samples, we adopt an iterative training approach that combines all positive and a
randomly selected subset of negative samples. Thus, the total loss for the second
phase is formulated as:

LTotal = LCL + λLtask (5)

where λ is a weighting coefficient used to balance the contrastive learning loss
LCL and the task-specific loss Ltask.

This approach not only achieves effective alignment between ECG and CMR
data in the latent space but also enhances the accuracy and robustness of the
ECG encoder in downstream cardiovascular disease diagnostic tasks.

3 Experiments

3.1 Dataset and experimental details

This study is based on data provided by the UK Biobank (UKB). We utilized
data from the first imaging assessment in UKB, focusing on electrocardiogram
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(ECG) data with a standard sampling frequency of 500Hz and a sampling du-
ration of 10 seconds. To address the issue of baseline drift in ECG signals, we
employed the seasonal decompose method for preprocessing. For cardiac mag-
netic resonance (CMR) imaging, we selected 50 frames of images from the middle
basoapical slice. Following the method described in literature [5], we segmented
the CMR images and cropped the smallest bounding rectangle containing the
heart, then resized it to 224×224 pixels. Consequently, the input data for the
CMR images was organized into a matrix of 50 channels of 224×224 pixels. The
entire dataset comprises 41,519 samples, with 24,908 allocated for the training
set, 8,303 for the validation set, and 8,308 for the test set.

In our experiments, we employed the PyTorch framework version 2.1.2 for
model training and testing. The processing of ECG data was based on the basic
Vision Transformer (ViT) model, setting the patch size to 1x100, with the di-
mension of the model’s embedding layer at 768, including 12 Transformer layers,
each with 12 attention heads. For CMR image processing, we selected the Swin
Transformer model, with a patch size set to 4x4 and a window size of 7. At the
start of training, we applied data augmentation techniques, including random
cropping, temporal flipping, and spatial flipping for ECG data, and random ro-
tation and scaling for CMR data, normalizing them to the range of [-1,1]. During
the self-supervised training phase for ECG data, we set a masking ratio of 0.8.
For contrastive learning, ECG and CMR data were independently encoded into
a shared feature space with 256 dimensions and set the λ in the total loss func-
tion to 1. In the classification task, given the scarcity of positive samples, with
prevalence rates of 2.2% for Myocardial Infarction (I21), 0.4% for Cardiomyopa-
thy (I42), 3.9% for Atrial Fibrillation (I48), and 1.2% for Heart Failure (I50), we
employed a strategy of combining all positive samples with a subset of negative
samples (twice the number of positive samples) to form several sub-datasets. It-
erative training was conducted within these sub-datasets. The Adam optimizer
was used for model training, with a learning rate of 8e-4 for ECG self-supervised
training and 8e-5 for the remaining training phases. We adjusted the learning
rate using a cosine annealing algorithm, with a 40-round warm-up period and
a total of 200 training rounds planned. All model parameter adjustments and
training processes were completed on a 24 GB NVIDIA GeForce RTX 4090 GPU.

3.2 Results

We leveraged ECG data enhanced through contrastive learning for predicting 82
cardiac phenotype indicators (LV/RV end-diastolic volume, LV/RV end-systolic
volume, LV/RV stroke volume, and so on) and diagnosing heart diseases (my-
ocardial infarction: ICD code I21, cardiomyopathy: ICD code I42, atrial fibrilla-
tion: ICD code I48, and heart failure: ICD code I50) to evaluate our model.

Baselines: Given the scarcity of research employing contrastive learning
with ECG and CMR data, we compared following methods: CMAE [21], the
modifications made to our CMR encoder(ResNet50 [8] and ViT [6]), and a triplet
loss approach [23]. Evaluation Metrics: We employed the Pearson correlation
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coefficient to evaluate the performance of our model in cardiac phenotype regres-
sion tasks. For classification tasks (diagnosing heart diseases), the Area Under
the Curve (AUC) metric was used as the evaluation criterion. Ablation Study:
We compared ECG signals under three conditions: neither self-supervised nor
contrastive learning, self-supervised but not contrastive learning, and not self-
supervised but contrastive learning. Additionally, we provided results solely using
CMR data supervised training based on the Swin Transformer as a reference.
All results are presented in Table 1, with five different random seeds. We also
did experiments comparing different ECG patch numbers and ViT sizes in the
regression task, with results presented in Fig.2(b).

The results demonstrate that our approach significantly improves the ability
of ECG to detect cardiomyopathy and myocardial infarction. Remarkably, for
cardiomyopathy, our method achieves even better results on ECG than super-
vised CMR, leading us to infer that for certain cardiovascular diseases, ECG and
CMR may contain some mutually exclusive features. Only through multimodal
learning can these features be unlocked, thereby enhancing the guidance for di-
agnosis and analysis of diseases. However, the results of using ECG to regress
the 82 cardiac phenotype indicators still significantly lag behind those obtained
from supervised CMR, which will be the focus of our future efforts. Moreover, it
is observed in Fig. 2 that the number of ECG patches significantly affects ECG
representation, while increasing the size of ViT can improve performance metrics
but is not cost-effective in terms of the additional GPU memory and training
time required. Additionally, we utilized the T-SNE to visualize the distribution
of ECG and CMR in the latent space before and after contrastive learning, as
illustrated in Fig. 2(a). Also, we used UMAP for disease-specific visualization
of ECG features before and after alignment, as shown in Fig. 2(d). It is evident
that the aligned ECG features show clearer separation between positive and neg-
ative samples. UMAP results for all diseases are available in the supplementary
materials. Fig. 2(c) presents the partial results of regression analysis on 82 car-
diac indicators within our test set, comprising 8308 samples in total. For more
detailed outcomes, please refer to the appendix.

Table 1. Comparison of previous methods and our proposed ECCL and ablation exper-
iments. MI, CM, AF, and HF stand for diseases and Mean R stands for the regression
correlation coefficient of the cardiac phenotype prediction.

MI AUC ↑ CM AUC ↑ AF AUC ↑ HF AUC ↑ Mean R ↑
CMAE [21] 0.705±0.005 0.733±0.058 0.739±0.002 0.818±0.006 0.387±0.001

ResNet50 [8] 0.703±0.004 0.742±0.008 0.715±0.012 0.768±0.009 0.382±0.003
ViT [6] 0.710±0.012 0.775±0.017 0.708±0.007 0.793±0.004 0.395±0.002

Triplet [23] 0.725±0.004 0.745±0.003 0.730±0.008 0.795±0.010 0.372±0.005
W/O SSL; W/O CL 0.627±0.007 0.565±0.027 0.634±0.001 0.664±0.021 0.252±0.012
W/ SSL; W/O CL 0.702±0.002 0.794±0.014 0.737±0.005 0.787±0.005 0.351±0.003
W/O SSL; W/ CL 0.683±0.010 0.612±0.009 0.698±0.003 0.714±0.015 0.339±0.002

ECCL(Ours) 0.714±0.009 0.826±0.012 0.739±0.001 0.807±0.005 0.407±0.002
CMR_Sup 0.729±0.006 0.740±0.052 0.767±0.003 0.761±0.014 0.561±0.007
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Fig. 2. Visualization of results: (a) T-SNE results of distribution for ECG and CMR
in the hidden space before (left panel) and after (right panel) comparative learning.
(b) Mean Pearson correlation coefficients in regression tasks using different numbers of
ECG Patches and ViT sizes. (c) Results of Pearson’s correlation coefficients for some
of the cardiac trait metrics in the regression task, and the whole results of 82 cardiac
traits can be found in the supplementary material. (d) UMAP visualization of ECG
features before and after alignment for certain diseases, with blue representing positive
samples and red representing negative samples.

4 Conclusion and Discussion

This study introduces a novel contrastive learning framework that significantly
boosts the diagnostic accuracy of ECG by incorporating insights from CMR,
effectively closing a vital gap in non-invasive cardiovascular diagnostics. By inte-
grating CMR data through a contrastive learning approach, our findings show-
case substantial enhancements in diagnosing cardiovascular diseases and predict-
ing cardiac phenotypes solely using ECG data. These advancements represent a
leap forward in our ability to leverage ECG for detailed cardiovascular analysis.
However, despite the progress, challenges persist in fully encapsulating the com-
prehensive spectrum of cardiac traits via ECG, which may become a direction
for subsequent research and a focal point for breakthroughs.
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This research not only confirms the immense potential of cross-modal data
integration in the realm of medical imaging but also underscores the extensive
utility of ECG as an affordable, yet powerful, tool for a thorough assessment of
cardiovascular health. This innovative approach aims to broaden the diagnostic
capabilities of ECG, making it a more potent tool in the fight against cardiovas-
cular diseases by enriching it with the depth of information typically reserved
for more invasive diagnostic methods.
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