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Abstract. The connectivity structure of brain networks/graphs pro-
vides insights into the segregation and integration patterns among diverse
brain regions. Numerous studies have demonstrated that specific brain
disorders are associated with abnormal connectivity patterns within dis-
tinct regions. Consequently, several Graph Neural Network (GNN) mod-
els have been developed to automatically identify irregular integration
patterns in brain graphs. However, the inputs for these GNN-based
models, namely brain networks/graphs, are typically constructed using
statistical-specific metrics and cannot be trained. This limitation might
render them ineffective for downstream tasks, potentially leading to sub-
optimal outcomes. To address this issue, we propose a Customized Re-
lationship Graph Neural Network (CRGNN) that can bridge the gap
between the graph structure and the downstream task. The proposed
method can dynamically learn the optimal brain networks/graphs for
each task. Specifically, we design a block that contains multiple param-
eterized gates to preserve causal relationships among different brain re-
gions. In addition, we devise a novel node aggregation rule and an appro-
priate constraint to improve the robustness of the model. The proposed
method is evaluated on two publicly available datasets, demonstrating
superior performance compared to existing methods. The implementa-
tion code is available at https://github.com/NJUSTxiazw/CRGNN.

Keywords: Graph Neural Network · Brain Disorder · Graph Structure
Learning.

1 Introduction

The connectivity structure within functional brain networks provides profound
insights into the patterns of segregation and integration across diverse brain re-
gions [6]. These patterns, in turn, reflect the brain’s efficiency and flexibility in
processing information [13]. Numerous studies have demonstrated that abnormal
integration patterns among brain regions are associated with neurological disor-
ders [15]. For example, Aggarwal et al. [1] reported significant abnormalities in
the interactions among the frontal, temporal, and occipital lobes in individuals
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with autism spectrum disorder (ASD). Zhou et al. [19] also observed some im-
paired functional connections between the right frontal lobe and the left parietal
lobe in patients with mild cognitive impairment (MCI). These findings imply
that abnormal functional connectivity could be the underlying cause of various
neurological disorders.

Recently, graph neural networks (GNNs) have shown significant advantages
in analyzing graph-structured data [17] and have been successfully applied to
various domains [16]. Within the domain of brain disorder identification, mul-
tiple GNNs have been developed to efficiently extract features from brain net-
works/graphs. For instance, Li et al. [9] developed a new model called BrainGNN
to enhance the interpretability of GNN-based methods, which incorporates an
innovative node pooling operation to identify the most discriminative subgraph
structures within brain networks. Chen et al. [3] proposed a novel network named
LSGNN to address the heterogeneity among brain networks, which integrates a
trainable module to encode brain networks into multiple latent subspaces in
a learnable manner. However, the inputs of these methods, such as brain net-
works/graphs, are typically constructed using specific statistical metrics (e.g.,
Pearson correlation) rather than being trainable. The separation of graph con-
struction and feature extraction may lead to a discrepancy between the input
graphs and the subsequent task, potentially impeding the achievement of optimal
results.

To address this issue, we propose a Customized Relationship Graph Neu-
ral Network (CRGNN) that integrates graph structure learning and subsequent
tasks within a unified framework. The main contributions of this paper are as
follows: 1) We develop a novel CRGNN framework to address the discrepancy
between graph structure and downstream tasks, which adaptively learns the
most suitable brain networks/graphs for various downstream tasks in a cus-
tomizable manner. 2) Our approach offers a significant advantage over tradi-
tional statistical-specific methods (e.g., Pearson correlation) by capturing non-
linear interactions among brain regions, which provides a more comprehensive
understanding of brain dysfunction. 3) The proposed CRGNN presents a robust
and flexible solution to the challenge of existing GNN-based methods for brain
disorder identification.

2 Method

2.1 Overview

Fig. 1 provides a detailed schematic of the proposed CRGNN framework, which
comprises two key components: the Customized Relationship Block (CRB) and
the Relational Aggregation Block (RAB). The CRB is designed to generate a
learnable matrix, denoted as G ∈ Rv×v, which captures the causal relationships
among various brain regions. It takes the fMRI signal X ∈ Rt×v directly as
input. Here, t represents the length of the time series, while v corresponds to the
number of brain regions defined by a specific brain atlas [12]. The CRB block
consists of v gated structures, all of which are learnable parameters. Each gate
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Fig. 1. An overview of the CRGNN framework, which comprises two main blocks:
the CRB for graph structure learning and the RAB for comprehensive brain network
representation.

preserves the causal effects of other brain regions on the specific brain region it
corresponds to. Subsequently, these v gates are integrated to formulate the brain
network/graph G. Furthermore, the RAB is proposed to aggregate the node
features into a joint latent space based on the learned graph G, facilitating the
generation of a graph-level representation. Ultimately, the model generates the
predicted outcome ŷ for each individual based on the graph-level representation.

2.2 Customized Relationship Block

Given the variability of factors contributing to different brain disorders, it is
evident that the patterns of abnormalities in brain functional integration also
vary across diseases. Traditional approaches that rely on predefined metrics such
as Pearson’s correlation coefficient for the construction of brain networks may not
yield optimal results for every neurological disorder. The primary challenge stems
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from the non-learnable nature of the brain connectivity structure, preventing
simultaneous optimization with the subsequent feature extraction step.

To address this challenge, we propose a novel block referred to as CRB, which
takes time series data as input and generates causal effects among all brain re-
gions as output. The brain connectivity structure is incorporated as trainable
parameters within the block, enabling it to be co-optimized with downstream
tasks. This allows for the identification of the most suitable brain networks for
specific neurological disorders, or customized graph learning that meets the spe-
cific requirements of different tasks. Specifically, we incorporated v gates into the
CRB, where each gate serves to evaluate the causal effect of other brain regions
on the corresponding brain region. In the domain of causal discovery, it is widely
acknowledged that causes generate effects. However, to determine the potential
causes of a variable, a limited search space is essential. It is commonly assumed
that all other variables are potential causes of that variable [10]. Essentially, this
means that the signals from each brain region can be reconstructed using signals
from all other brain regions, which can be expressed as:

X̂ :, i = fi(X :,\i,N i) = tanh

 v∑
m=1,m ̸=i

Gm,iX :,m +N i

 , (1)

where X :,\i ∈ Rt×(v−1) contains the signal values of all brain regions except
for the i-th brain region X :,i. fi(·) is associated with a parameter vector, i.e.,
Gatei = [G1,i,G2,i, . . . ,Gi−1,i,Gi+1,i, . . . ,Gv,i], which is used to preserve the
causal effects of other brain regions on the i-th brain region. N i ∈ Rt is the noise
term, and X̂ :, i represents the predicted signal value of the i-th brain region.
The symbol tanh(·) is a nonlinear activation function. By concatenating the
parameters of v gates and appending a diagonal vector with all elements equal
to 0, a graph with a size of v × v can be obtained. This is the optimal brain
network G that we have been looking for, i.e., G = [Gate1, Gate2, . . . , Gatev].

2.3 Relational Aggregation Block

With the derived brain network/graph G, the next step is to obtain a com-
prehensive graph-level representation for the diagnosis of brain disorders. To
accomplish this, we employ multiple Directed Graph Convolution (DGC) lay-
ers and graph pooling layers. The DGC layers are utilized to aggregate node
features, while the graph pooling layers are employed to identify significant sub-
structures within the graph. Notably, the brain network G we obtained is an
asymmetric graph because it preserves the causal relationships among brain re-
gions. Therefore, we have developed a DGC layer designed to aggregate node
features from two perspectives. The propagation rule for the l-th DGC layer is
formulated as follows:

H (l) = mean(G̃(l−1)H (l−1)θ
(l)
1 , tran(G̃(l−1))H (l−1)θ

(l)
2 ), (2)
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where G(l) is the updated graph after l steps of graph pooling layers. Here,

G̃(l) = G(l) + I v(l) is a matrix with added self-connections. I v(l) is an iden-
tity matrix, and v(l) equals to the number of nodes in the graph G(l). H (l) ∈
Rv(l)×d(l)

represents the computed embedding following l steps of the DGC layer,
and d(l) is the dimension of the embedding. θ(l)1 and θ

(l)
2 ∈ Rd(l−1)×d(l)

are two
trainable parameters of the same dimension. The function tran(·) represents the
matrix transpose operation.

In addition to updating node features through the DGC layer, the graph
pooling layer also plays a crucial role in improving the robustness of the GNN
model. This layer is tasked with identifying critical substructures relevant to
downstream tasks, facilitating the integration of essential information. In this
study, we utilize the widely used TopK pooling strategy [2] to preserve essential
substructures, which can be defined as follows:

sort_index = TopK
(
H (l);w(l)

)
, (3)

where w(l) ∈ Rd(l)

is a parameter vector and it is used to evaluate the importance
of all the nodes within the graph G(l). TopK(·) is a sorting function that returns
the indices of nodes in graph G(l) based on their importance. After calculating
the importance indices of the nodes, the next step is to extract the structure
of the critical subgraph and update the node embeddings of the identified key
nodes. The updated graph and node embeddings will be used as input in the
subsequent layers.

As illustrated in Fig. 1, the initial node features H (0) will be updated to
H (2) by several iterative operations, including the DGC layer and the TopK
pooling layer. Finally, the 2D matrix H (2) is transformed into a graph-level
representation, denoted as the vector H̃ . The vector is subsequently fed into a
fully connected layer to yield the predicted outcome ŷ.

2.4 Objective Function

In this study, our objective function comprises three components. Firstly, we
employ the conventional cross-entropy loss to minimize the discrepancy between
the ground-truth label y and the predicted outcome ŷ, which can be defined by

LCE = ylog(ŷ) + (1− y)log(1− ŷ), (4)

Secondly, each gate in the CRB block will yield a prediction for its corre-
sponding brain region. By combining the predictions of these v gates, we can
obtain a 2D matrix that has the same size as the input X . To minimize the error
between the predicted result X̂ and the input X , we employ the mean squared
error (MSE) as the loss function, which is defined as:

LMSE = ||X − X̂ ||22. (5)

Finally, to enhance the model’s generalization ability and reduce over-fitting,
we incorporate an L1 regularization term into the computed brain network/graph,
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denoted as LG = ||G||1. In summary, the total loss for the proposed model can
be expressed by

L = LCE + α ∗ LMSE + β ∗ LG, (6)

where α and β are two trade-off parameters.

3 Experiments

3.1 Dataset and Experimental Settings

We evaluated our framework on two publicly available datasets: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)3 and the Autism Brain Imaging Data
Exchange (ABIDE)4. The ADNI includes 170 normal controls (NC) and 283 indi-
viduals with mild cognitive impairment (MCI), while the ABIDE comprises 571
typically developing (TD) subjects and 531 individuals with Autism Spectrum
Disorder (ASD). The resting-state functional magnetic resonance imaging (rs-
fMRI) data is preprocessed using a standardized protocol that involves several
steps: slice time correction, motion correction, spatial filtering, and covariates
regression [4]. The time-series data for 90 brain regions were extracted using the
Automated Anatomical Labeling (AAL) atlas [14], which is commonly employed
in various frameworks to identify brain disorders.

We compare the proposed model with five GNN-based methods that are
specifically designed for brain network analysis, including: 1) Hi-GCN [7], 2)
BrainGNN, [9], 3) PSCR-GNN [18], 4) IBGNN [5], and 5) LSGNN [3]. All exper-
iments are conducted using NVIDIA GeForce GTX 1080Ti GPUs. The CRGNN
is implemented in the PyTorch framework [11] and trained with an Adam op-
timizer (with a learning rate of 0.0001, training epochs of 50, and a batch size
of 8). We conduct a grid search to determine the optimal values for the hyper-
parameters: α = 10−3 and β = 10−2. For the impact of hyper-parameter con-
figurations on the results, please refer to the Supplementary Material. For the
TopK pooling layer, 1/3 of the original number of nodes is retained as significant
nodes to be kept each time. All reported results are the average of 5 rounds of
ten-fold cross-validation. Finally, four metrics are utilized in our experiments,
namely accuracy (ACC), sensitivity (SEN), specificity (SPE), and F1 score.

3.2 Result Analysis

Table 1 presents the classification results of all methods across two publicly
available datasets. Based on the experimental results, we can make the following
observations: First, IBGNN and LSGNN consistently outperform previously de-
veloped models in identifying brain disorders, such as Hi-GCN, BrainGNN, and
PSCR-GNN. Their superior performance is primarily attributed to their ability
to mitigate the effects of noise factors within predefined brain networks/graphs.

3 http://adni.loni.usc.edu/
4 http://fcon_1000.projects.nitrc.org/indi/abide/
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Table 1. Classification results (mean±std) of all methods on two tasks (%).

Tasks Metrics Hi-GCN BrainGNN PSCR-GNN IBGNN LSGNN CRGNN
NC vs. MCI ACC 71.31±2.32 73.72±2.56 69.33±2.59 74.18±2.29 78.36±2.40 82.78±1.94

SEN 73.94±6.38 77.29±4.18 74.71±6.79 78.42±4.76 83.47±3.39 86.10±2.98
SPE 70.16±5.28 71.81±3.75 66.58±5.17 71.82±5.39 75.29±5.06 80.92±2.64
F1 65.73±2.99 68.70±3.18 64.49±2.11 69.39±2.54 74.20±3.20 78.90±2.09

TD vs. ASD ACC 62.43±1.37 65.25±1.08 58.26±2.17 67.06±1.23 68.33±0.83 72.23±1.01
SEN 58.16±3.01 62.07±3.76 55.41±2.15 63.67±1.77 65.53±2.09 69.68±2.37
SPE 67.20±4.82 69.32±5.97 61.78±5.47 70.95±3.81 71.48±2.49 75.35±3.79
F1 61.49±2.36 64.83±0.88 57.83±2.78 66.63±1.37 68.10±1.83 72.15±1.26

As a result, they achieve a more accurate graph-level representation of the brain
network, leading to a significant improvement in the recognition performance of
subsequent tasks. Second, our proposed approach exhibits the best performance
compared to other GNN-based methods. This is mainly due to the flexibility of
our approach, which allows for the customization of the brain network/graph to
accommodate various downstream tasks. Unlike other methods that rely on pre-
defined statistical metrics for brain network/graph construction, our approach
dynamically learns the optimal graph structure tailored to the subsequent task.
Moreover, our approach is statistically superior to other GNN-based methods
(with p < 0.05) according to pairwise t-test, thereby providing robust evidence
of its effectiveness.

3.3 Ablation Study

We conduct ablation studies to evaluate the effectiveness of the novel compo-
nents, including: 1) the customized graph within the CRB module, 2) the rule for
aggregating node information in the RAB module, and 3) the regularized loss LG

applied to the learned graph structure. In the CRB module, we adopt a widely
recognized approach of replacing the brain networks/graphs learned with those
derived from the Pearson correlation coefficient. In the RAB module, we adopt a
commonly used node information aggregation rule, specifically the Graph Con-
volution Network (GCN) [8], to update node features, instead of the DGC layer.
For the loss function, we conduct comparative experiments on whether to im-
pose regularization loss on the underlying graph structure. The experimental
results of the ablation study are listed in Table 2. The research findings reveal
that both the proposed customized graph learning and the innovative node fea-
ture updating rules play a crucial role in enhancing the recognition performance
for brain disorders. Furthermore, the ablation experiment conducted on the loss
term LG reveals that incorporating this term not only enhances the robustness
of the model but also mitigates the risk of overfitting.
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Table 2. Ablation study of CRGNN with different components on two tasks.

CRB RAB Loss NC vs. MCI TD vs. ASD
Learnable Pearson DGC GCN LG Without ACC F1 ACC F1

✓ ✓ ✓ 82.78±1.94 78.90±2.09 72.23±1.01 72.15±1.26

✓ ✓ ✓ 80.78±2.72 75.94±3.67 70.78±1.26 68.62±1.88

✓ ✓ ✓ 79.90±2.14 75.26±2.81 70.60±1.41 68.80±1.86

✓ ✓ ✓ 76.58±2.77 69.75±3.90 68.05±1.59 65.78±1.99

✓ ✓ ✓ 72.39±2.79 63.93±3.62 64.79±1.48 62.37±1.90
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Fig. 2. The top 10 most discriminative connectivities identified by our method for both
tasks. The motion direction of the ball in each arc represents the causal relationship
between two brain regions (from cause to effect).

3.4 Discriminative Connectivity

Fig. 2 shows the top 10 discriminative connectivities retained by CRGNN in
both tasks. Chen et al. found that changes in the middle frontal gyrus and
amygdala were strongly associated with the worsening of MCI [4]. Aggarwal et
al. demonstrated a robust relationship between changes in the temporal and
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occipital lobes with ASD [1]. These findings are consistent with the conclusions
drawn in this paper, further validating the reliability of our study.

4 Conclusion

In this paper, we present a novel GNN model for brain disorder identification
that integrates graph structure learning and downstream tasks within a unified
framework. We have designed a novel block, called CRB, to infer the causal
relationships among brain regions. The block consists of multiple gates as learn-
able parameters that can be jointly optimized with the downstream tasks. We
evaluate our method on two public datasets and demonstrate its effectiveness.
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