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Abstract. Causal generative modelling is gaining interest in medical
imaging due to its ability to answer interventional and counterfactual
queries. Most work focuses on generating counterfactual images that look
plausible, using auxiliary classifiers to enforce effectiveness of simulated
interventions. We investigate pitfalls in this approach, discovering the is-
sue of attribute amplification, where unrelated attributes are spuriously
affected during interventions, leading to biases across protected char-
acteristics and disease status. We show that attribute amplification is
caused by the use of hard labels in the counterfactual training process
and propose soft counterfactual fine-tuning to mitigate this issue. Our
method substantially reduces the amplification effect while maintaining
effectiveness of generated images, demonstrated on a large chest X-ray
dataset. Our work makes an important advancement towards more faith-
ful and unbiased causal modelling in medical imaging. Code available at
https://github.com/biomedia-mira/attribute-amplification.

1 Introduction

Scientific investigation has always been driven by causal questions such as: “What
is the effect of treatment X on disease Y?”. In medical imaging, we may ask
“What would this patient’s image look like if they had no disease?”. These causal
questions cannot be answered with statistical tools alone, but require a mathe-
matical framework that allows such questions to be answered from data. Causal
models describe (assumed) causal mechanisms of a system [18], in which the
causal relationships between variables are directed from cause to effect, and
change in a cause would result in change in its effect, but not the other way
around. Causal models allow us to analyse interactions of variables within our
environment (interventions) and hypothetical alternative worlds (counterfactu-
als). The ability to reason about cause-and-effect relationships has gained signif-
icant interest [22,21,34]. Efforts have been made to combine causality and deep
learning models [2,22], but few works have attempted to satisfy all three rungs
of Pearl’s causal ladder [18]: (i) association, (ii) intervention and (iii) counter-
factual. Notable works include Deep Structural Causal Models (DSCMs) [17,3]
and Neural Causal Models (NCMs) [29,30]. Our work builds upon DSCMs used
for producing high-fidelity counterfactual images for real-world data [3]. Ribeiro
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et al. [3] proposed to train the generative causal model using a hierarchical vari-
ational auto-encoder (HVAE) conditioned on the assumed causal parents. Solely
relying on standard likelihood-based training, however, was found to lead to
suboptimal axiomatic effectiveness [16], where conditioning on intervened upon
parents may be ignored by the forward model post-abduction. To encourage
the model to obey (counterfactual) conditioning, the authors proposed an addi-
tional training step called counterfactual fine-tuning, whereby pretrained parent
predictors are used to help fine-tune the HVAE such that conditioning on coun-
terfactual parents results in semantically meaningful changes.

We analyse the quality of counterfactuals generated by DSCMs under the
counterfactual fine-tuning setup. We discover that while DSCMs produce plau-
sible counterfactual images, these may exhibit amplified attributes that were not
intervened upon. For example, when intervening on biological sex for a healthy
male patient, a generated female counterfactual may appear healthier than the
real image. We term this phenomenon attribute amplification. Amplification of
unrelated attributes needs to be addressed as it is in conflict with the assumed
causal graph and can cause distribution shift and introduce harmful bias. At-
tribute amplification can lead to the encoding of spurious correlations in the
generated images between protected characteristics and disease. We find that
attribute amplification occurs in the counterfactual fine-tuning step. To miti-
gate this issue, we propose a simple yet effective strategy, soft counterfactual
fine-tuning, where we replace hard labels with inferred soft labels during coun-
terfactual fine-tuning. We show through a series of experiments that soft counter-
factual fine-tuning effectively mitigates attribute amplification in counterfactual
inference models, whilst retaining the ability of high-fidelity image synthesis.
Some visual examples of generated CFs are presented in Fig 1.

2 Counterfactual image generation

Various works have used generative models such as VAEs [11], GANs [7], normal-
izing flows [19] and diffusion models [23,8,25] for causal effect estimation [14,12,26],
causal discovery [31,20,5], and other tasks modelling conditional [27,15,24,4]
and interventional distributions [13,10,29,33]. Very few works [30,17] satisfied all
three rungs of Pear’s ladder of causation [18,1]. Our work builds upon DSCMs
first introduced by Pawlowski et al. [17], and recently improved by Ribeiro et
al. [3], leveraging hierarchical variational autoencoders (HVAE) to generate high-
quality high-resolution images. In the following, we summarise the main compo-
nents of DSCMs as introduced by Ribeiro et al., for more details refer to [3].

Structural Causal Models [18] are defined by a triplet ⟨U,A, F ⟩, where U =
{ui}Ki=1 are a set of exogenous variables, A = {ai}Ki=1 a set of endogenous vari-
ables, and F = {fi}Ki=1 a set of functions such that ak := fk(pak, uk), where
pak ⊆ A \ ak are called direct causes or parents of ak. SCMs allow us to per-
form interventions by substituting one or multiple parents, denoted by the do-
operator. The estimation of counterfactuals follows three steps: (i) abduction:
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infer exogenous noise given observed data; (ii) action: perform an intervention
do(ak := c); (iii) prediction: infer counterfactuals via the modified model.

Deep Structural Causal Models were first introduced in [17] and recently im-
proved in [3] for high-resolution image generation. Let x be an image and
{a1, ..., aK−1} ⊇ pax ancestors of x. For each low-dimensional attribute, a con-
ditional normalizing flow is used as its (invertible) mechanism ak = fk(uk;pak),
such that abduction is tractable and explicit. For high-dimensional structured
variables like images, the mechanism is implemented by a HVAE. To generate
a counterfactual, we first approximately infer the exogenous noise z ∼ qϕ(z |
x,pax), where qϕ is the encoder of the HVAE. Similarly, we can explicitly infer
the exogenous noises for attributes via: uk = f−1(ak;pak). We can then perform
an intervention do(ai := c) by e.g. setting ai to some target c. Note, we may inter-
vene on multiple ai at the same time. We compute counterfactuals of attributes
using abducted noise uk, and thus obtain p̃ax, the counterfactuals of parents of
x. Finally, we generate the counterfactual image x̃ = gθ(z, p̃ax). Ribeiro et al
[3] noticed that using only likelihood training for the HVAE, some parents may
be ignored during inference, effectively leading to ‘ignored counterfactual condi-
tioning’, i.e. x̃ does not obey p̃ax. To mitigate this issue the authors introduced
counterfactual fine-tuning using hard labels for parents. Hard-CFT leverages a
pre-trained predictor qψ(p̃ax | x̃), and optimises the pre-trained HVAE weights
{θ, ϕ} to maximise log qψ(p̃ax | x̃) with ψ fixed. This encourages the DSCM to
produce effective counterfactuals which obey counterfactual conditioning.

3 The attribute amplification problem

Datasets and experimental setup. We use chest X-ray images of the MIMIC-
CXR dataset [9] for our experiments. We follow the dataset splits and filtering
of [3,6], and focus on the disease label of pleural effusion. The resulting dataset
contained subjects with and without pleural effusion, consisting of 62,336 images
for training, 9,968 for validation and 30,535 for testing. All images were resized
to 224×224 resolution. Following [3], we consider four attributes: (self-reported)
race, biological sex, disease status, and age for the underlying causal graph (see
Fig. A1). Note, that disease, sex, and race are assumed to be independent.

Evaluating counterfactual effectiveness. The ability to generate realistic counter-
factual images can be measured via effectiveness [3,16], which assesses whether
counterfactuals (CFs) can fool attribute predictors. The attribute predictors
were trained on real data with ground truth labels in a supervised manner.
Here, we measure the predictive performance in terms of AUC. Results are sum-
marised in Table 1, where we report (i) the baseline test performance of each
attribute predictor on real test images and (ii) the performance when testing
on different types of CFs. Ideally, we would find similar performance across real
and counterfactual images. Without counterfactual fine-tuning, CFs yield much
lower AUC on intervened attributes, highlighting the importance of CFT.
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Table 1: Quantitative evaluation of effectiveness of CFs of different types. For
intervened and unintervened attributes, AUC % (test on CFs) is reported (with
change in brackets) compared to the baseline (test on real images, first row).

Intervention CF Type
Effectiveness / Amplification

Race Sex Disease

None Real images 93.8 99.6 94.2

do(race)
No CFT 68.9 (↓ 24.9) 99.6 (· 0.0) 94.2 (· 0.0)
Hard-CFT [3] 99.0 (↑ 5.2) 99.7 (↑ 0.1) 96.4 (↑ 2.2)

Soft-CFT 98.7 (↑ 4.9) 99.5 (↓ 0.1) 94.3 (↑ 0.1)

do(sex)
No CFT 92.4 (↓ 1.4) 92.8 (↓ 6.8) 94.0 (↓ 0.2)

Hard-CFT [3] 97.1 (↑ 3.3) 99.8 (↑ 0.2) 97.8 (↑ 3.6)

Soft-CFT 93.3 (↓ 0.5) 99.7 (↑ 0.1) 94.5 (↑ 0.3)

do(disease)
No CFT 93.7 (↓ 0.1) 99.2 (↓ 0.4) 70.6 (↓ 23.6)

Hard-CFT [3] 97.3 (↑ 3.5) 99.7 (↑ 0.1) 97.9 (↑ 3.7)

Soft-CFT 93.8 (· 0.0) 99.6 (· 0.0) 98.1 (↑ 3.9)

The attribute amplification problem. From the results in Table 1, we identify
the key problem of attribute amplification, where attributes that should remain
unchanged during interventions are amplified in the generated images, indicated
by an increase in AUC beyond the baseline for the attribute predictor. When us-
ing Hard-CFT as proposed in [3], counterfactual images yield consistently higher
AUC compared to real images for unintervened attributes. These attributes seem
more strongly encoded in the generated images than in the real images, leading
to undesired dataset shift and potential bias. For example, if x is healthy and
male, when do(sex := female), x̃ becomes healthier than x, although in the as-
sumed causal graph disease is not a descendant of sex and thus do(sex) should
not affect disease. We observe an increase in AUC for the disease attribute by
3.6% after intervening on sex. Similar, the AUC for race increases by 3.5% after
intervening on disease. These undesirable side effects question the faithfulness
of generated counterfactual images when using the Hard-CFT strategy.

Why is attribute amplification a problem? The effect on unintervened attributes
violates the assumed causal graph, affecting the causal relationships between
variables. This violation is illustrated in Fig. A1. Attribute amplification not
only affects the quality of counterfactuals but may introduce harmful, spurious
correlations between protected characteristics and disease status. Note these
spurious correlations are caused by the counterfactual training process, which
is different from the spurious correlations discussed in shortcut learning [28,32]
that mainly come from data issues. This could have negative consequences when
using generated images in downstream applications such as counterfactual data
augmentation or counterfactual explainability.



Mitigating attribute amplification in counterfactual image generation 5

Algorithm 1 Soft counterfactual fine-tuning (Soft-CFT)

Input: training data {x,pax}; frozen predictor qψ; DSCM qϕ, gθ.

Compute counterfactuals:

1. Compute x̃ and p̃ax using qϕ and gθ upon intervention do(·).
Fine-tune DSCM:

1. Identify attributes in p̃ax that are not intervened on or non-descendants

of intervened attributes, denoted as A∗.

2. For attributes ak ∈ A∗ use soft labels as targets. With l a classification

loss function: Lsoft := l(qψ(ak | x), qψ(ak | x̃)).
4. For ak /∈ A∗ use hard labels as targets i.e. Linterv := l(ak, qψ(ak | x̃)).
5. Fine-tune qϕ, gθ by minimising Lsoft + Linterv.

Why does Hard-CFT cause attribute amplification? In Hard-CFT, x̃ is encour-
aged to maximise the performance of a pretrained attribute predictor qψ(ãk |
x̃),∀ãk ∈ p̃ax, regardless of whether ãk should actually be affected by the in-
tervention. Suppose we have sample x with mild pleural effeusion (d = 1), and
that the attribute predictor outputs a disease probability of qψ(d | x) = 0.65 for
the real image. When we intervene on race, as both race and disease are parents
of x, Hard-CFT will not only maximise the probability of the race predictor but
will also maximise the predicted disease probability qψ(d̃ | x̃) by optimizing the
HVAE weights. As a consequence, the model will amplify pleural effusion related
features in the generated race counterfactual image.

4 Mitigating attribute amplification with soft labels

We discovered that attribute amplification occurs during counterfactual fine-
tuning, which, however, is necessary to increase effectiveness on intervened at-
tributes. Amplification of unintervened attributes is caused by the use of hard
labels in the CFT step, making all attributes more extreme than they may have
been in the original image. Ideally, we only change attributes that are affected by
the intervention, and leave other attributes unchanged. To this end, we propose
soft counterfactual fine-tuning (Soft-CFT) to mitigate attribute amplification.
In Soft-CFT, we treat attributes differently during fine-tuning depending on
whether they are being intervened on or not. For intervened attributes, we fine-
tune the model with the hard labels to ensure the model obeys conditioning. For
unintervened attributes, we use inferred soft labels. We first pass the real im-
age through the trained attribute predictors to obtain the predicted probability
for each non-intervened attribute. These predicted probabilities then form the
targets during counterfactual fine-tuning. This encourages the network to not
change the encoding of unintervened attributes, and the resulting counterfactu-
als should have the same predicted probability on the unintervened attributes as
the original real images. The Soft-CFT process is summarised in Algorithm 1.
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Fig. 1: Generated CFs with (a) Hard-CFT and (b) Soft-CFT. First rows show
original image x and CFs x̃; second rows show direct effect of CFs, i.e. x̃− x.

4.1 Effect of Soft-CFT on effectiveness and attribute amplification

Table 1 compares effectiveness and amplification of Soft-CFT and Hard-CFT.
With Soft-CFT, AUCs for unintervened attributes are closer to the baseline,
substantially reducing the amplification effect while preserving effectiveness on
intervened attributes. When intervening on sex, disease amplification is reduced
to 0.3% compared to 3.6% for Hard-CFT. Amplification on race is completely
removed (0.0) compared to 3.5% when intervening on disease. Visual examples in
Fig. 1 show that both Hard-CFT and Soft-CFT generate plausible CFs. However,
with Hard-CFT, the generated images exhibit more global and stronger direct
effects. With Soft-CFT, images show more targeted, localised changes aligned
with the intervened variable. See Fig. A2 for additional visual examples.

4.2 Utility of counterfactual images in downstream applications

We evaluate the utility of CFs by training multiple attribute predictors on the
generated counterfactuals. We train attribute predictors on each set of coun-
terfactuals (race, sex, disease), and evaluate on real images from the test set.
To make a fair comparison, we randomly generate one CF per subject per at-
tribute, such that we train on the same number of CFs as real training samples.
Note, this is the opposite in Table 1 where attribute predictors are trained on
real images, and evaluated on counterfactuals. To compare the performance of
predictors trained on counterfactuals only, we compare to the baseline where
predictors are trained and tested on real data only. Without CFT, AUCs are
generally low on intervened attributes due to the low effectiveness (see Table 1).
We find consistent and substantial improvements for Soft-CFT over Hard-CFT.
Predictors trained on counterfactuals generated with our Soft-CFT strategy are
much closer to baseline performance on both intervened and unintervened at-
tributes for all three sets of race, sex, and disease counterfactuals. Hard-CFT,
on the other hand, appears to introduce undesired distribution shift. Note the
decrease in performance on sex counterfactuals even for the sex predictor, de-
spite their high effectiveness observed in Table 1. Here, attribute amplification
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Table 2: Performance of predictors trained only on CFs with intervened and un-
intervened attributes, evaluated on real images. Comparing different CF training
strategies. AUC % performance is compared to a baseline trained on real images.

Training Set CF Type
Attribute Prediction Task

Race Sex Disease

Original Real images 93.8 99.6 94.2

Race CFs
No CFT 56.9 (↓ 36.9) 99.5 (↓ 0.1) 93.9 (↓ 0.3)

Hard-CFT 81.6 (↓ 12.2) 98.3 (↓ 1.3) 92.2 (↓ 2.0)

Soft-CFT 81.2 (↓ 12.6) 99.6 (· 0.0) 93.8 (↓ 0.4)

Sex CFs
No CFT 82.1 (↓ 11.7) 82.2 (↓ 17.4) 92.3 (↓ 1.9)

Hard-CFT 75.4 (↓ 18.4) 79.6 (↓ 20.0) 89.8 (↓ 4.4)

Soft-CFT 92.4 (↓ 1.4) 90.0 (↓ 9.6) 94.0 (↓ 0.2)

Disease CFs
No CFT 79.7 (↓ 14.1) 98.1 (↓ 1.5) 30.4 (↓ 63.8)

Hard-CFT 77.6 (↓ 16.2) 95.2 (↓ 4.4) 88.8 (↓ 5.4)

Soft-CFT 91.8 (↓ 2.0) 99.5 (↓ 0.1) 90.0 (↓ 4.2)

of Hard-CFT results in images being too extreme. While they are correctly clas-
sified with predictors trained on real images, these images are not suitable for
training predictors evaluated on real images. The results in Table 2 together with
Table 1 indicate that Soft-CFT both improves effectiveness and reduces attribute
amplification yielding more faithful counterfactual images which is important for
their utility in downstream applications.

4.3 Assessing distribution shift of counterfactual images

To gain further insights into the faithfulness of counterfactual images under
different training strategies, we inspect the latent space of image embeddings
extracted from attribute predictors trained on real data. Here, we use a publicly
available pre-trained multi-task model from [6]. This model was trained on the
same splits of MIMIC-CXR as used in our work. The model was previously
used to visualise subgroup differences across race, sex and disease. Applying
principal component analysis (PCA) to the high-dimensional image embeddings
showed that each independent attribute is encoded in a different PCAmode, with
the first mode encoding disease, the second mode encoding sex, and the third
mode encoding race differences. We leverage this feature inspection approach
to compare image embeddings from real and counterfactual images. Ideally, we
should be unable to see differences in the data distribution between real and
corresponding generated images, if the counterfactuals are faithful.

We randomly select 1000 samples from the test set, generate counterfactuals
and inspect the distributions in the corresponding PCA modes. Fig. 2 focuses
on distribution shift in the race attribute under interventions on disease and sex.
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Fig. 2: Marginal distribution of image embeddings across PCA mode 3 of a multi-
task model. This mode encodes changes in the race attribute. We plot distribu-
tions for subgroups of real data alongside distributions of counterfactual images
when intervening on disease and sex attributes. When training with Hard-CFT
(left) there is a clear distribution shift between real (blue) and counterfactual im-
ages (red). This shift is removed for both interventions when using our proposed
Soft-CFT (right). These results suggest that Soft-CFT successfully mitigates at-
tribute amplification and generates more faithful counterfactual images.

We observe that with Hard-CFT, there is a clear distribution shift between the
real images from the subgroup ‘White’ and the counterfactual subgroups ‘White
do(disease)’ and ‘White do(sex)’. In contrast, the images generated with Soft-
CFT align much better with real data distribution, suggesting that Soft-CFT
mitigates attribute amplification and yields more faithful counterfactual images
that are more similar to real data. Additional plots inspecting other combinations
of intervened and unintervened attributes across different subgroups are provided
in Fig. A3, confirming that Soft-CFT improves counterfactual image generation.

5 Conclusion

In this paper, we discover the important issue of attribute amplification in coun-
terfactual image generation with DSCMs when using the previously proposed
counterfactual fine-tuning step with hard labels [3]. Attribute amplification vio-
lates the assumed causal graph, introducing distribution shift, and resulting in
potentially harmful spurious correlations. For example, we observed how inter-
ventions on independent attributes such as race and sex can cause distribution
shift in disease status. An intervened image may appear healthier or more dis-
eased than the original real images. Such undesired effects could be harmful when
counterfactual images are used for data augmentation in downstream applica-
tions. We mitigate this with Soft-CFT, using inferred probabilities for uninter-
vened attributes. Our experiments on a large chest X-ray dataset with results on
attribute prediction performance, together with a detailed feature inspection to
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analyse distribution shift across subgroups, suggest that Soft-CFT successfully
mitigates attribute amplification with the ability to generate effective and more
faithful counterfactual images. However, we still observe discrepancies between
the attribute prediction performance when training on real vs counterfactual
images. Closing this gap remains an open problem for future work. Visual as-
sessment of CFs by clinical expert will helpful in future work.

The proposed method is not only applicable to DSCMs but may improve
other causal generative models that use classifier guidance during training. Thus,
our work makes an important advancement towards more faithful and hopefully
unbiased causal modelling in medical imaging.
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